Azimuthal asymmetries in SIDIS and Drell-Yan processes: from high to low transverse momentum

In coll. with: A. Bacchetta, G. Bozzi, M. Echevarria, A. Prokudin, M. Radici PLB 797 (2019) 134850

Unpolarized SIDIS Differential cross section

$$\frac{d\sigma}{d\phi_h \, dP_{h\perp}^2} \propto \frac{\alpha^2}{Q^2} \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h \, F_{UU}^{\cos\phi_h} + \varepsilon \cos 2\phi_h \, F_{UU}^{\cos 2\phi_h} \right\}$$

Azimuthal asymmetries

$$A_{UU}^{\cos\phi_h} = \frac{\sqrt{2\,\varepsilon(1+\varepsilon)}\,F_{UU}^{\cos\phi_h}\cos\phi_h}{F_{UU,T}+\varepsilon F_{UU,L}}\,, \qquad A_{UU}^{\cos2\phi_h} = \frac{\varepsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h}{F_{UU,T}+\varepsilon F_{UU,L}}$$

Three physical scales, two theoretical tools

At leading twist and order $\alpha_{\mathcal{S}}$ in collinear factorization

collinear PDF

 $F_{UU,T}$ given by the convolution of PDFs and FFs with hard scattering coefficients

$$\begin{aligned} F_{UU,T} &= \frac{1}{Q^2} \frac{\alpha_s}{(2\pi z)^2} \sum_a x e_a^2 \int_x^1 \frac{d\hat{x}}{\hat{x}} \int_z^1 \frac{d\hat{z}}{\hat{z}} \,\delta\!\left(\frac{q_T^2}{Q^2} - \frac{(1-\hat{x})(1-\hat{z})}{\hat{x}\hat{z}}\right) \\ &\times \left[f_1^a\!\left(\frac{x}{\hat{x}}\right) D_1^a\!\left(\frac{z}{\hat{z}}\right) C_{UU,T}^{(\gamma^* q \to qg)} + f_1^a\!\left(\frac{x}{\hat{x}}\right) D_1^g\!\left(\frac{z}{\hat{z}}\right) C_{UU,T}^{(\gamma^* q \to qg)} + f_1^a\!\left(\frac{x}{\hat{x}}\right) D_1^g\!\left(\frac{z}{\hat{z}}\right) C_{UU,T}^{(\gamma^* g \to q\bar{q})} \right] \end{aligned}$$

Bacchetta, Boer, Diehl, Mulders, JHEP 0808 (2008) 023

Expansion of delta function for small q_T/Q

$$\delta\left(\frac{q_T^2}{Q^2} - \frac{(1-\hat{x})(1-\hat{z})}{\hat{x}\hat{z}}\right) = \delta(1-\hat{x})\,\delta(1-\hat{z})\,\ln\frac{Q^2}{q_T^2} + \frac{\hat{x}}{(1-\hat{x})_+}\,\delta(1-\hat{z}) \\ + \frac{\hat{z}}{(1-\hat{z})_+}\,\delta(1-\hat{x}) + \mathcal{O}\left(\frac{q_T^2}{Q^2}\ln\frac{Q^2}{q_T^2}\right)$$

Extraction of leading behaviour for $M \ll q_T \ll Q$

$$\begin{aligned} F_{UU,T} &= \frac{1}{q_T^2} \frac{\alpha_s}{2\pi^2 z^2} \sum_a x e_a^2 \left[f_1^a(x) D_1^a(z) L\left(\frac{Q^2}{q_T^2}\right) + f_1^a(x) \left(D_1^a \otimes P_{qq} + D_1^g \otimes P_{gq}\right)(z) \right. \\ &\left. + \left(P_{qq} \otimes f_1^a + P_{qg} \otimes f_1^g\right)(x) D_1^a(z) \right] \end{aligned}$$

$$L\left(\frac{Q^2}{q_T^2}\right) = 2C_F \ln \frac{Q^2}{q_T^2} - 3C_F$$

Meng, Olness, Soper, PRD 54 (1996) 1919

The structure function $F_{UU,T}$ From low to intermediate q_T

Collins, Soper, Sternan, NFB 250 (63) Collins, Foundations of Perturbative QCD (11) Echevarria, Idilbi, Scimemi, JHEP 1207 (2012) 002

Factorization holds at all orders (with subtracted TMDs, scales set equal to Q)

$$F_{UU,T}(x,z,P_{hT}^2) = \mathcal{H}_{\text{SIDIS}} 2\pi \sum_{a} e_a^2 x \int_0^\infty db_T b_T J_0(b_T |\boldsymbol{P}_{hT}|/z) \widehat{f}^a(x,b_T^2) \widehat{D}^a(z,b_T^2)$$

The structure function $F_{UU,T}$ From low to intermediate q_T

In the small- b_T region, $b_T \ll 1/M$, to $\mathcal{O}(\alpha_S)$ with $\mu_b = b_0/b_T$ and $b_0 = 2e^{-\gamma_E}$

$$\begin{split} \widehat{f_1^a}(x, b_T^2, Q^2) &\approx \frac{1}{2\pi} \left\{ f_1^a(x, \mu_b^2) + \frac{\alpha_S}{\pi} \sum_i \left(C_{a/i}^{(1)} \otimes f^i \right)(x, \mu_b^2) \right\} \, e^{S(b_T^2, Q^2)} \\ S(b_T^2, Q^2) &= -\frac{\alpha_S}{4\pi} \, C_F\left(\ln^2 \frac{Q^2 b_T^2}{b_0^2} - 3 \ln \frac{Q^2 b_T^2}{b_0^2} \right) + \mathcal{O}(\alpha_S^2) \end{split}$$

The collinear PDF f_1^a is evolved from the scale μ_b to Q using DGLAP equation $f_1^a(x;\mu_b^2) = f_1^a(x;Q^2) - \frac{\alpha_s}{2\pi} \left(P_{qq} \otimes f_1^a + P_{qg} \otimes f_1^g \right)(x) \ln \frac{Q^2 b_T^2}{b_0^2} + O(\alpha_s^2)$

We recover the structure function at lowest order in the region $M \ll q_T \ll Q$

$$F_{UU,T} = \frac{1}{q_T^2} \frac{\alpha_s}{2\pi^2 z^2} \sum_a x e_a^2 \left[f_1^a(x) D_1^a(z) L\left(\frac{Q^2}{q_T^2}\right) + f_1^a(x) \left(D_1^a \otimes P_{qq} + D_1^g \otimes P_{gq}\right)(z) + \left(P_{qq} \otimes f_1^a + P_{qg} \otimes f_1^g\right)(x) D_1^a(z) \right]$$

Azimuthal asymmetries in SIDIS

New expression for the $\cos \phi$ structure function (TMD factorization assumed)

$$F_{UU}^{\cos\phi_h} = \frac{2MM_h}{Q} \mathcal{H}'_{\text{SIDIS}} \mathcal{B}_1 \left[\left(x \widehat{h} \, \widehat{H}_1^{\perp(1)} - \frac{M_h}{M} \, \widehat{f_1} \frac{\widehat{\hat{D}}^{\perp(1)}}{z} \right) - \frac{M}{M_h} \left(x \widehat{f}^{\perp(1)} \widehat{D}_1 + \frac{M_h}{M} \, \widehat{h}_1^{\perp(1)} \frac{\widehat{\hat{H}}}{z} \right) \right]$$

Cahn, PLB 78 (1978) 269 Anselmino et al, PRD 71 (2005) 074006 Bacchetta et al., JHEP 0702 (2007) 093 Wei, Song, Chen, Liang, PRD 95 (2017) 074017

$$\begin{split} \mathcal{B}_n[\widehat{f}\widehat{D}] &= 2\pi \sum_a e_a^2 \times \int_0^\infty db_T b_T^{n+1} J_n(b_T | \boldsymbol{P}_{hT} | / z) \widehat{f}^a(x, b_T^2) \widehat{D}^a(z, b_T^2) \\ \widehat{f}^{(n)}(x, b_T^2) &= n! \left(-\frac{2}{M^2} \frac{\partial}{\partial b_T^2} \right)^n \widehat{f}(x, b_T^2) \qquad \widehat{D}^{(n)}(z, b_T^2) = n! \left(-\frac{2}{M_h^2} \frac{\partial}{\partial b_T^2} \right)^n \widehat{D}(z, b_T^2) \end{split}$$

QCD equations of motion lead to the relations

$$xf^{\perp} = x\tilde{f}^{\perp} + f_1$$

 $\frac{\tilde{D}^{\perp}}{z} = \frac{D^{\perp}}{z} - D_1$

Wandzura–Wilczek approximation, the *pure twist-3* functions with a tilde are neglected: $xf^{\perp} \approx f_1$, $xf_3^{\perp} \approx f_1$

The *whole* leading term of the low- q_T expansion of the collinear result

$$F_{UU}^{\cos\phi_h} = -\frac{1}{Qq_T} \frac{\alpha_s}{2\pi^2 z^2} \sum_a x e_a^2 f_1^a(x) D_1^a(z) L\left(\frac{Q^2}{q_T^2}\right) + \dots$$

$$L\left(\frac{Q^2}{q_T^2}\right) = 2C_F \ln \frac{Q^2}{q_T^2} - 3C_F$$

matches the leading power behavior at small q_T/Q of the collinear LO results

$$F_{UU}^{\cos\phi_{h}} = -\frac{1}{Qq_{T}} \frac{\alpha_{s}}{2\pi^{2}z^{2}} \sum_{a} x e_{a}^{2} \left[f_{1}^{a}(x) D_{1}^{a}(z) L\left(\frac{Q^{2}}{q_{T}^{2}}\right) + f_{1}^{a}(x) \left(D_{1}^{a} \otimes P_{qq}' + D_{1}^{g} \otimes P_{gq}'\right)(z) + \left(P_{qq}' \otimes f_{1}^{a} + P_{qg}' \otimes f_{1}^{g}\right)(x) D_{1}^{a}(z) \right]$$

Bacchetta, Boer, Diehl, Mulders, JHEP 0808 (2008) 023

We can obtain the *subtracted* functions xf^{\perp} and \tilde{D}^{\perp} at order α_s

$$xf^{\perp a}(x,k_{\perp}^{2})\Big|_{k_{\perp}\neq 0} = \frac{\alpha_{s}}{4\pi^{2}k_{\perp}^{2}} \left[\frac{1}{2}L\left(\frac{Q^{2}}{k_{\perp}^{2}}\right)f_{1}^{a}(x) + C_{F}f_{1}^{a}(x) + \sum_{i=a,g}(P_{ai}^{\prime}\otimes f_{1}^{i})(x,Q^{2})\right]$$

$$\frac{1}{z}\left.\tilde{D}^{\perp a}(z,P_{\perp}^{2})\right|_{P_{\perp}\neq 0} = -\frac{\alpha_{s}}{4\pi^{2}P_{\perp}^{2}}\left[\frac{1}{2}L\left(\frac{z^{2}Q^{2}}{P_{\perp}^{2}}\right)D_{1}^{a}(z) - C_{F}D_{1}^{a}(z) + \sum_{i=a,g}(D_{1}^{i}\otimes P_{ia}^{\prime})(z)\right]$$

from the leading high- k_{\perp} expressions of the *unsubtracted* xf^{\perp} and D^{\perp} (EOM)

Bacchetta, Boer, Diehl, Mulders, JHEP 0808 (2008) 023 Chen, Ma, PLB 768 (2017) 380

assuming the same prescription of the twist-2 unpolarized TMDs

By taking the Fourier transforms and the first derivatives w.r.t. b_T , we get

$$x\hat{f}^{\perp(1)\,a}(x,b_{T}^{2}) = \frac{1}{M^{2}b_{T}^{2}} \frac{\alpha_{S}}{4\pi^{2}} \left[C_{F} \left(\ln \frac{Q^{2}b_{T}^{2}}{b_{0}^{2}} - \frac{3}{2} \right) f_{1}^{a}(x) + \left(P_{ai}^{\prime} \otimes f_{1}^{i} \right) (x) \right]$$

$$\hat{\vec{D}}^{\perp(1)\,a}(z,b_T^2) = -\frac{1}{zM_h^2 b_T^2} \,\frac{\alpha_S}{4\pi^2} \left[\, C_F\left(2\ln\frac{Q^2 b_T^2}{b_0^2} - 3\right) D_1^a(z) \, + \, \left(D_1^i \otimes P_{ai}'\right)(z) \right]$$

By substituting in the LO TMD expression for the $\cos\phi$ structure function

$$F_{UU}^{\cos\phi_h} = \frac{2MM_h}{Q} \mathcal{B}_1\left[\left(x\widehat{h}\,\widehat{H}_1^{\perp(1)} - \frac{M_h}{M}\,\widehat{f}_1\frac{\widehat{D}^{\perp(1)}}{z}\right) - \frac{M}{M_h}\left(x\widehat{f}^{\perp(1)}\widehat{D}_1 + \frac{M_h}{M}\,\widehat{h}_1^{\perp(1)}\frac{\widehat{H}}{z}\right)\right]$$

we recover the leading power behavior at small qT/Q of the collinear LO results

$$F_{UU}^{\cos\phi_{h}} = -\frac{1}{Qq_{T}} \frac{\alpha_{s}}{2\pi^{2}z^{2}} \sum_{a} x e_{a}^{2} \left[f_{1}^{a}(x) D_{1}^{a}(z) L\left(\frac{Q^{2}}{q_{T}^{2}}\right) + f_{1}^{a}(x) \left(D_{1}^{a} \otimes P_{qq}' + D_{1}^{g} \otimes P_{gq}'\right)(z) + \left(P_{qq}' \otimes f_{1}^{a} + P_{qg}' \otimes f_{1}^{g}\right)(x) D_{1}^{a}(z) \right]$$

Bacchetta, Boer, Diehl, Mulders, JHEP 0808 (2008) 023

Azimuthal asymmetries in Drell-Yan

Azimuthal asymmetries in Drell-Yan Gottfried-Jackson frame

$$F_{UU}^{\cos\phi}{}_{\rm GJ} = \frac{2M^2}{Q} \mathcal{H}_{\rm DY} \mathcal{B}_1^{\rm DY} \left[x_1 \hat{f}^{\perp(1)\,a}(x_1, b_T^2) \hat{f}_1^{\,\bar{a}}(x_2, b_T^2) - \hat{f}_1^{\,a}(x_1, b_T^2) x_2 \hat{\tilde{f}}_1^{\,\perp(1)\,\bar{a}}(x_2, b_T^2) \right]$$

Lu, Schmidt, PRD 84 (2011) 114004

$$\mathcal{B}_{n}^{DY}\left[\hat{f}^{a}\,\hat{g}^{\bar{a}}\right] \equiv 2\pi \sum_{a} e_{a}^{2} \int_{0}^{\infty} db_{T} b_{T}^{n+1} J_{n}(b_{T}q_{T}) \hat{f}^{a}(x_{1},b_{T}^{2}) \hat{g}^{\bar{a}}(x_{2},b_{T}^{2}) + (1\leftrightarrow 2)$$

In agreement with the known result in the region $M^2 \ll q_T^2 \ll Q^2$

Boer, Vogelsang, PRD 74 (2006) 014004 Berger, Qiu, Rodriguez-Pedraza, PRD 76 (2007) 074006

$$F_{UU}^{\cos\phi}{}_{\mathrm{GJ}} = \frac{\alpha_s}{\pi^2 Q q_T} \sum_{a} e_a^2 \left[L\left(\frac{Q^2}{q_T^2}\right) f_1^a(x_1) f_1^{\bar{a}}(x_2) + (P_{qq}^{\prime} \otimes f_1^q)(x_1) f_1^{\bar{a}}(x_2) \right]$$

 $\left. + (P_{qg}' \otimes f_1^g)(x_1) f_1^{\bar{a}}(x_2) + f_1^a(x_1) (P_{qq}^+ \otimes f_1^q)(x_2) + f_1^a(x_1) (P_{qg}^+ \otimes f_1^g)(x_2) \right|$

Azimuthal asymmetries in Drell-Yan Collins-Soper frame

$$F_{UU}^{\cos\phi}{}_{\rm CS} = \frac{M^2}{Q} \mathcal{H}_{\rm DY} \mathcal{B}_1^{\rm DY} \left\{ \left[x_1 \hat{f}^{\perp(1)\,a}(x_1, b_T^2) + x_1 \hat{\tilde{f}}^{\perp(1)\,a}(x_1, b_T^2) \right] \hat{f}_1^{\,\bar{a}}(x_2, b_T^2) - \hat{f}_1^{\,a}(x_1, b_T^2) \left[x_2 \hat{f}_1^{\,\perp(1)\,\bar{a}}(x_2, b_T^2) + x_2 \hat{\tilde{f}}_1^{\,\perp(1)\,\bar{a}}(x_2, b_T^2) \right] \right\}$$

Lu, Schmidt, PRD 84 (2011) 114004

In agreement with the known result in the region $M^2 \ll q_T^2 \ll Q^2$

Boer, Vogelsang, PRD 74 (2006) 014004 Berger, Qiu, Rodriguez-Pedraza, PRD 76 (2007) 074006

$$\begin{aligned} F_{UU}^{\cos\phi} &= -\frac{\alpha_s}{\pi Q q_T} \sum_{a} e_a^2 \left[f_1^a(x_1) (\tilde{P}_{qq} \otimes f_1^{\bar{q}})(x_2) + f_1^a(x_1) (\tilde{P}_{qg} \otimes f_1^g)(x_2) \right. \\ &\left. - (\tilde{P}_{qq} \otimes f_1^q)(x_1) f_1^{\bar{a}}(x_2) - (\tilde{P}_{qg} \otimes f_1^g)(x_1) f_1^{\bar{a}}(x_2) \right] \end{aligned}$$

Logarithmic term absent also in Wandzura-Wilczek approximation

- Description of SIDIS and DY with measured q_T involves two frameworks: TMD factorization at low q_T and collinear factorization at high-q_T
- ► In the region M ≪ q_T ≪ Q both are applicable. Depending on the observables the leading terms in the two approaches may coincide
- We propose a twist-3 TMD factorization formula, based on the parton model: $\cos \phi$ asymmetries in SIDIS and DY match the results at high q_T
- We solved the long-standing problem of the resummation of collinear results at high-q_T for the cos φ asymmetry for these two processes
- ► Important step towards a full proof of TMD factorization at twist-three