The impact of the non-perturbative parameters in the PB method on the predictions for low energy DY measurements

REF 2019

• Ola Lelek ¹ Francesco Hautmann ^{1,2} Hannes Jung ^{1,3} Mees van Kampen ¹ Lissa Keersmaekers ¹ Mikel Mendizabal Morentin ⁴

¹University of Antwerp (UAntwerp)

²University of Oxford

³Deutsches Elektronen-Synchrotron (DESY)

⁴Euskal Herriko Unibertsitatea

Introduction

The PB method :

- valid in a wide range of x, k_{\perp} , μ^2
- applicable to exclusive observables & MC generators
- connection to DGLAP

PB method is successfully applied to the DY at the LHC see talk of Qun Wang

CMS, A. M. Sirunyan et al. (2019). 1909.04133

This talk:

- 1. examine in detail non-perturbative parameters in PB method
- 2. assess their impact on
 - TMDs
 - DY at the LHC
 - DY at low energies

Non-perturbative parameters in PB evolution equations

The PB evolution equation:

JHEP 1801 (2018) 070

$$\begin{split} \widetilde{A}_{a}\left(x, \mathbf{k}, \mu^{2}\right) &= \Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right) \widetilde{A}_{a}\left(x, \mathbf{k}, \mu_{0}^{2}\right) + \sum_{b} \int \frac{\mathrm{d}^{2} \mu'}{\pi \mu'^{2}} \Theta\left(\mu^{2} - \mu'^{2}\right) \Theta\left(\mu'^{2} - \mu_{0}^{2}\right) \\ &\times \int_{x}^{z_{M}} \mathrm{d}z \; \frac{\Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right)}{\Delta_{a}\left(\mu'^{2}, \mu_{0}^{2}\right)} \; P_{ab}^{R}\left(z, \alpha_{s}((1-z)^{2} \mu'^{2})\right) \widetilde{A}_{b}\left(\frac{x}{z}, \mathbf{k} + (1-z)\mu', \mu'^{2}\right) \end{split}$$

Where do the non-perturbative parameters enter?

Non-perturbative parameters in PB evolution equations

The PB evolution equation:

JHEP 1801 (2018) 070

$$\begin{split} \widetilde{A}_{\mathfrak{a}}\left(\mathbf{x}, \mathbf{k}, \mu^{2}\right) &= \Delta_{\mathfrak{a}}\left(\mu^{2}, \mu_{0}^{2}\right) \widetilde{A}_{\mathfrak{a}}\left(\mathbf{x}, \mathbf{k}, \mu_{0}^{2}\right) + \sum_{b} \int \frac{\mathrm{d}^{2} \mu'}{\pi \mu'^{2}} \Theta\left(\mu^{2} - \mu'^{2}\right) \Theta\left(\mu'^{2} - \mu_{0}^{2}\right) \\ &\times \int_{x}^{z_{M}} \mathrm{d}z \; \frac{\Delta_{\mathfrak{a}}\left(\mu^{2}, \mu_{0}^{2}\right)}{\Delta_{\mathfrak{a}}\left(\mu'^{2}, \mu_{0}^{2}\right)} \; P_{\mathfrak{a}b}^{R}\left(z, \alpha_{\mathfrak{s}}((1-z)^{2} \mu'^{2})\right) \widetilde{A}_{b}\left(\frac{x}{z}, \mathbf{k} + (1-z)\mu', \mu'^{2}\right) \end{split}$$

Where do the non-perturbative parameters enter?

- Initial distribution: $\widetilde{A}_{0,a}(x, \mathbf{k}_0, \mu_0) = \widetilde{f}_{0,a}(x, \mu_0) \cdot \exp(-\mathbf{k}_0^2/\sigma^2)$ where $\sigma^2 = q_s^2/2$
- soft gluon resolution scale: $z_M = 1 \frac{m}{2}$ where the test is which have an known marked in equation above, but also in the Sudakov form factor:

$$\Delta_s(\mu^2,\mu_0^2) = \exp\left(-\sum_{\alpha}\int_{-\infty}^{\mu^2} rac{\mathrm{d}\mu'^2}{\mu'^2}\int_{-\infty}^{2\pi}\mathrm{d}z \,\, z \,\, P^R_{b\sigma}\left(z, lpha_s\left((1-z)^2\mu'^2
ight)
ight)$$

notation:
$$k = (k^0, k^1, k^2, k^3) = (E_k, k, k^3)$$
, where $k = (k^1, k^2)$, and $k_{\perp} = |\mathbf{k}|, \mu' = \sqrt{\mu'^2}$

Non-perturbative parameters in PB evolution equations

The PB evolution equation:

JHEP 1801 (2018) 070

$$\begin{split} \widetilde{A}_{a}\left(x, \mathbf{k}, \mu^{2}\right) &= \Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right) \widetilde{A}_{a}\left(x, \mathbf{k}, \mu_{0}^{2}\right) + \sum_{b} \int \frac{\mathrm{d}^{2} \mu'}{\pi \mu'^{2}} \Theta\left(\mu^{2} - \mu'^{2}\right) \Theta\left(\mu'^{2} - \mu_{0}^{2}\right) \\ &\times \int_{x}^{z_{M}} \mathrm{d}z \; \frac{\Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right)}{\Delta_{a}\left(\mu'^{2}, \mu_{0}^{2}\right)} \; P_{ab}^{R}\left(z, \alpha_{s}((1-z)^{2} \mu'^{2})\right) \widetilde{A}_{b}\left(\frac{x}{z}, \mathbf{k} + (1-z)\mu', \mu'^{2}\right) \end{split}$$

Where do the non-perturbative parameters enter?

- Initial distribution: $\widetilde{A}_{0,a}(x, \mathbf{k}_0, \mu_0) = \widetilde{f}_{0,a}(x, \mu_0) \cdot \exp(-\mathbf{k}_0^2/\sigma^2)$ where $\sigma^2 = q_s^2/2$
- soft gluon resolution scale: $Z_M = 1 \frac{q_0}{\mu^7}$ arXiv:1908.08524 & talk of Mees van Kampen marked in equation above, but also in the Sudakov form factor:

$$\Delta_{a}(\mu^{2},\mu_{0}^{2}) = \exp\left(-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{\mathrm{d}\mu'^{2}}{\mu'^{2}}\int_{0}^{z_{M}}\mathrm{d}z \ z \ P_{ba}^{R}\left(z,\alpha_{s}\left((1-z)^{2}\mu'^{2}\right)\right)\right)$$

notation: $k = (k^0, k^1, k^2, k^3) = (E_k, k, k^3)$, where $k = (k^1, k^2)$, and $k_{\perp} = |k|, \mu' = \sqrt{\mu'^2}$

Impact of soft gluon resolution scale on TMDs

$$\Delta_{a}(\mu^{2}, \mu_{0}^{2}) = \exp\left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \int_{0}^{z_{M}} dz \ z \ P_{ba}^{R}\left(z, \alpha_{s}\left((1-z)^{2}\mu'^{2}\right)\right)\right)$$

$$z_{M} = 1 - \alpha_{0}/\mu'$$

Sudakov: probability of an evolution without any resolvable branching bewteen μ_0 and μ bigger z_M (= smaller q_0) \rightarrow smaller Sudakov \rightarrow more branchings

- with low q₀ intrinsic k_⊥ distribution smeared by the evolution more branchings which fill matching region of intrinsic k_⊥ and evolution (q²₁ = (1 − z)²µ²)
- large q₀: matching of intrinsic distribution with the evolution visible
- lower q₀ ↔ lower TMD in the low k_⊥ and higher in the high k_⊥ region
- NB: gluons at low x: 1/z term in P^R smears the contribution from intrinsic k_⊥, low q₀ dominates the whole spectrum

Impact of intrinsic k_{\perp} on TMDs

$$\widetilde{A}_{0,a}(x, k_{\perp 0}, \mu_0) = \widetilde{f}_{0,a}(x, \mu_0) \cdot \exp(-k_{\perp 0}^2/\sigma^2)$$

where $\sigma^2 = q_s^2/2$

- q_s affects only the low k_{\perp} region
- with smaller q_s values, TMDs at low k_{\perp} larger
- with large q_s smooth matching of intrinsic k_⊥ and evolution
- NB: gluon at small x: spectrum dominated by the evolution, the effect of q_s much less visible

Application of the TMDs to measurements

Procedure: Phys. Rev. D99, 074008 (2019). 1804.11152

- DY collinear ME
- Generate k₁ of qq according to TMDs (m_{DY} fixed, x₁, x₂ change)
- compare with the measurement

Application of the TMDs to measurements

Procedure: Phys. Rev. D99, 074008 (2019). 1804.11152

- DY collinear ME
- Generate k_{\perp} of $q\overline{q}$ according to TMDs ($m_{\rm DY}$ fixed, x_1 , x_2 change)
- compare with the measurement

Impact of soft gluon resolution scale and intrinsic k_{\perp} on DY spectrum at the LHC

Strong dependence on q_0 observed, low p_{\perp} region described better with $q_0 \approx 1$ GeV.

Very slight effects of q_s only visible in the very low p_{\perp} region

What about low energy DY

We apply the PB method to the NUSEA (E866) data

fix target experiment at Fermilab for proton-hydrogen and proton-deuterium collisions at $\sqrt{s} = 38.8~{
m GeV}$ Phys. Rev. Lett. 80, 3715 (1998), J. C. Webb, Ph.D. Thesis, hep-ex/0301031, 2003.

Impact of soft gluon resolution scale and intrinsic k_{\perp} on DY spectrum at the LHC

Strong dependence on q_0 observed, low p_{\perp} region described better with $q_0 \approx 1$ GeV.

Very slight effects of q_s only visible in the very low p_{\perp} region

What about low energy DY?

We apply the PB method to the NUSEA (E866) data fix target experiment at Fermilab for proton-hydrogen and proton-deuterium collisions at $\sqrt{s} = 38.8 \text{ GeV}$ Phys. Rev. Lett. 80, 3715 (1998), J. C. Webb, Ph.D. Thesis, hep-ex/0301031, 2003.

Dynamic *z_M*

Here: $q_s = 0.5 \text{ GeV}$ Strong dependence on q_0

 q_s dependence Drell-Yan: $4.2 < M_{\mu + ^+\mu^-} < 5.2 \text{ GeV}$ $\frac{2E}{\pi\sqrt{3}}\sigma/dx_Fdp_T^2$ Data 10 as = 0.7 GeV qs = 0.5 GeV= 0.3 GeV 10^{-1} 10^{-2} 1.4 MC/Data 1.2 0.8 0.6 0.5 1.5 2.5 $p_{\tau}^{\mu+}^{3\mu^{-}}$ (GeV) 0 1 2

Here: $q_0 = 1.0 \ {
m GeV}$ Strong dependence on q_s

Toy Model: No fit for TMDs, LO ME with K-factor = 1.8 hep-ex/0301031

Dynamic *z_M*

Strong dependence on q_0

Here: $q_0 = 1.0 \text{ GeV}$ Strong dependence on q_s

Dynamic *z_M*

Strong dependence on qs

Data described similarly well by TMDs with different combinations of q_0 and q_s

 $\rightarrow q_0$ and q_s are not independent

One needs to use different datasets since they give complementary information (NUSEA, ATLAS,...)

Toy Model: No fit for TMDs, LO ME with K-factor = 1.8 hep-ex/0301031

NUSEA with Benchmark PB TMDs and MCatNLO method

Results with PBSet2 obtained from the fit PhysRevD.99.074008 with the MCatNLO subtraction Procedure for PB TMDs and MCatNLC

PhysRevD.99.074008 & talk of Sara Taheri Monfared

Procedure for PB TMDs and MCatNLO: Phys. Rev. D100, 074027 (2019) & talk of Qun Wang

Band from the fit: experimental + model (blue), scale variation (orange) Variation of q_s not included in the fit, shown separately (variations by factor of 2)

Very good description of the low energy and low mass DY with PB TMDs and MCatNLO

PB method applicable in a wide kinematic range

PB TMDs and MCatNLO subtraction scheme

PB TMDs with MCatNLO subtraction method: Phys. Rev. D100, 074027 (2019)

MCatNLO prediction (ME after the subtraction, not physical) orders of magnitude smaller than data. The phase space is then populated with TMDs

Transition between the low and high p_{\perp} physics treated by the MCatNLO method

VERY FRESH RESULT! ©

pp collisions at $\sqrt{s} = 200 \text{ GeV}$ at the RHIC Data: PhysRevD.99.072003

Very good description of the low energy and low mass DY with PB TMDs and MCatNLO again! PB method applicable in a wide kinematic range

- The effect of intrinsic k_{\perp} distribution and soft gluon resolution scale studied in TMDs, DY at LHC and DY at low energies
- NUSEA & PHENIX data described by the benchmark PB TMDs with MCatNLO method PB method applicable in a wide kinematic range
- sensitivity of the NUSEA data to the intrinsic k_{\perp} and soft gluon resolution scale illustrated
- Presented results important for the further development of the fit procedure within the PB method

- The effect of intrinsic k_{\perp} distribution and soft gluon resolution scale studied in TMDs, DY at LHC and DY at low energies
- NUSEA & PHENIX data described by the benchmark PB TMDs with MCatNLO method PB method applicable in a wide kinematic range
- sensitivity of the NUSEA data to the intrinsic k_{\perp} and soft gluon resolution scale illustrated
- Presented results important for the further development of the fit procedure within the PB method

Thank you!

backup

Impact of q_s on TMDs, $\mu = 10 \text{ GeV}$

Impact of q_s on iTMDs

No difference between different q_S values (blue, violet, orange curves on top of each other. HERAPDF2.0 used as a starting distribution for PB TMDs shown for comparison.

Impact of q_0 on TMDs, $\mu = 10~{ m GeV}$

Z boson p_{\perp} , q_s dependence

Z boson p_{\perp} , q_0 dependence

NUSEA, Dynamic z_M , other mass bins

Toy Model: No fit for TMDs, LO ME with K-factor = 1.8 hep-ex/0301031