Dynamical resolution scale for TMDs at the LHC

Workshop on Resummation, Evolution, Factorization November 2019, University of Pavia

Mees van Kampen¹, Francesco Hautmann^{1,2}, Ola Lelek¹, Lissa Keersmaekers¹

¹University of Antwerp, ²University of Oxford

based on Nucl. Phys. B949 (2019) 114795 [arXiv:1908.08524] F. Hautmann, L. Keersmaekers, A. Lelek, A.M. van Kampen

Parton branching method

- Introduction
- Dynamical resolution scale

2 Comparison other approaches

- Single and multiple emission approaches
- Comparison KMRW and PB

8 Results

- TMDs
- iTMDs
- Z boson p_T spectrum

Transverse momentum dependent (TMD) parton distributions

- Soft gluon resummation needed in nonperturbative parts of QCD factorization theorems
- Examples of regions with logarithmic enhanced contributions to the cross section:
 - low q_T : $q_T \ll Q$ high $\sqrt{s} : \sqrt{s} \gg M$ $\alpha_s^n \ln^m Q/q_T$ $(\alpha_s \ln \sqrt{s}/M)^n$

low- q_T factorization

high-energy factorization

See e.g. R. Angeles-Martinez et al. TMD parton distribution functions: status and prospects, Acta Phys.Polon. B46 (2015) no.12, 2501-2534 Transverse momentum dependent (TMD) parton distributions

- Soft gluon resummation needed in nonperturbative parts of QCD factorization theorems
- Examples of regions with logarithmic enhanced contributions to the cross section:

low
$$q_T: q_T \ll Q$$
high $\sqrt{s}: \sqrt{s} \gg M$ $\alpha_s^n \ln^m Q/q_T$ $(\alpha_s \ln \sqrt{s}/M)^n$

low- q_T factorization

high-energy factorization

See e.g. R. Angeles-Martinez et al. TMD parton distribution functions: status and prospects, Acta Phys.Polon. B46 (2015) no.12, 2501-2534

- Parton Branching (PB) method: Recently developed formalism for TMDs
 - Applicable over large range of transverse momenta
 - · Applicable to exclusive final states and MC event generators
 - Connection with DGLAP evolution for collinear PDFs

See Hautmann, Jung, Lelek, Radescu, Zlebcik, "Collinear and TMD quark and gluon densities from parton branching", JHEP 1801 (2018) 070

Introduction Dynamical resolution scale

The parton branching method: introduction

Evolution of TMDs $\tilde{\mathcal{A}}_a(x,k,\mu^2) = x\mathcal{A}_a(x,k,\mu^2)$ from μ_0 up to μ :

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,\boldsymbol{k},\mu^{2}) &= \Delta_{a}(\mu^{2},\mu_{0}^{2})\tilde{\mathcal{A}}_{a}(x,\boldsymbol{k},\mu_{0}^{2}) + \\ &+ \sum_{b} \bigg[\int \frac{d^{2}\boldsymbol{\mu}'}{\pi\mu'^{2}} \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2}) \frac{\Delta_{a}(\mu^{2},\mu_{0}^{2})}{\Delta_{a}(\mu'^{2},\mu_{0}^{2})} \times \\ &\times \int_{x}^{z_{M}(\mu')} dz P_{ab}^{(R)}(z,\alpha_{s}(\underline{q}_{\perp})) \tilde{\mathcal{A}}_{b}(\frac{x}{z},\boldsymbol{k}+a(z)\boldsymbol{\mu}',\mu'^{2}) \bigg]. \end{split}$$
(1)

Introduction Dynamical resolution scale

The parton branching method: introduction

Evolution of TMDs $\tilde{\mathcal{A}}_a(x, k, \mu^2) = x \mathcal{A}_a(x, k, \mu^2)$ from μ_0 up to μ :

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,\boldsymbol{k},\mu^{2}) &= \Delta_{a}(\mu^{2},\mu_{0}^{2})\tilde{\mathcal{A}}_{a}(x,\boldsymbol{k},\mu_{0}^{2}) + \\ &+ \sum_{b} \bigg[\int \frac{d^{2}\boldsymbol{\mu}'}{\pi\mu'^{2}} \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2}) \frac{\Delta_{a}(\mu^{2},\mu_{0}^{2})}{\Delta_{a}(\mu'^{2},\mu_{0}^{2})} \times \\ &\times \int_{x}^{z_{M}(\mu')} dz P_{ab}^{(R)}(z,\alpha_{s}(\boldsymbol{q}_{\perp})) \tilde{\mathcal{A}}_{b}(\frac{x}{z},\boldsymbol{k}+a(z)\boldsymbol{\mu}',\mu'^{2}) \bigg]. \end{split}$$
(1)

 $P^{(R)}_{ab}(z, \alpha_s)$ real emission probability

Introduction Dynamical resolution scale

The parton branching method: introduction

Evolution of TMDs $\tilde{\mathcal{A}}_a(x, k, \mu^2) = x \mathcal{A}_a(x, k, \mu^2)$ from μ_0 up to μ :

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,\boldsymbol{k},\mu^{2}) &= \Delta_{a}(\mu^{2},\mu_{0}^{2})\tilde{\mathcal{A}}_{a}(x,\boldsymbol{k},\mu_{0}^{2}) + \\ &+ \sum_{b} \left[\int \frac{d^{2}\mu'}{\pi\mu'^{2}} \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2}) \frac{\Delta_{a}(\mu^{2},\mu_{0}^{2})}{\Delta_{a}(\mu'^{2},\mu_{0}^{2})} \times \right. \\ &\times \int_{x}^{z_{M}(\mu')} dz P_{ab}^{(R)}(z,\alpha_{s}(\underline{q}_{\perp})) \tilde{\mathcal{A}}_{b}(\frac{x}{z},\boldsymbol{k}+a(z)\mu',\mu'^{2}) \right]. \end{split}$$
(1)

 $P_{ab}^{(R)}(z, \alpha_s)$ real emission probability, $\Delta_a(\mu, \mu_0)$ Sudakov (no branching probability)

Introduction Dynamical resolution scale

The parton branching method: introduction

Evolution of TMDs $\tilde{\mathcal{A}}_a(x, k, \mu^2) = x \mathcal{A}_a(x, k, \mu^2)$ from μ_0 up to μ :

$$\begin{split} \tilde{\mathcal{A}}_{a}(x, \mathbf{k}, \mu^{2}) &= \Delta_{a}(\mu^{2}, \mu_{0}^{2}) \tilde{\mathcal{A}}_{a}(x, \mathbf{k}, \mu_{0}^{2}) + \\ &+ \sum_{b} \left[\int \frac{d^{2} \mu'}{\pi \mu'^{2}} \Theta(\mu^{2} - \mu'^{2}) \Theta(\mu'^{2} - \mu_{0}^{2}) \frac{\Delta_{a}(\mu^{2}, \mu_{0}^{2})}{\Delta_{a}(\mu'^{2}, \mu_{0}^{2})} \times \right. \\ &\times \int_{x}^{z_{M}(\mu')} dz P_{ab}^{(R)}(z, \alpha_{s}(\underbrace{q_{\perp}}_{b(z)\mu'})) \tilde{\mathcal{A}}_{b}(\frac{x}{z}, \mathbf{k} + a(z)\mu', \mu'^{2}) \bigg]. \end{split}$$
(1)

 $P_{ab}^{(R)}(z, \alpha_s)$ real emission probability, $\Delta_a(\mu, \mu_0)$ Sudakov (no branching probability)

Features with ordering variables: $z_M(\mu')$, a(z) and b(z)

The parton branching method: introduction

Properties of parton branching:

• Association μ' with emitted transverse momentum q_{\perp} :

$$q_{\perp}^2 = (1-z)^2 \mu'^2.$$
 (2)

Eq. (2) is angular ordering condition

[Hautmann, Jung, Lelek, Radescu, Zlebcik, JHEP 1801 (2018) 070]

The parton branching method: introduction

Properties of parton branching:

• Association μ' with emitted transverse momentum q_{\perp} :

$$q_{\perp}^2 = (1-z)^2 \mu'^2.$$
 (2)

Eq. (2) is angular ordering condition

• With angular ordering: a(z) = b(z) = 1 - z

[Hautmann, Jung, Lelek, Radescu, Zlebcik, JHEP 1801 (2018) 070]

The parton branching method: introduction

Properties of parton branching:

• Association μ' with emitted transverse momentum q_{\perp} :

$$q_{\perp}^2 = (1-z)^2 \mu'^2.$$
 (2)

Eq. (2) is angular ordering condition

• With angular ordering:
$$a(z) = b(z) = 1 - z$$

• Scale of the strong coupling: $\alpha_s(q_{\perp}^2) = \alpha_s((1-z)^2 \mu'^2)$ • Calculation of \mathbf{k}_{i+1} from \mathbf{k}_i : $\mathbf{k}_i + (1-z_i)\mu'$

Mee

Hautmann, Jung, Lelek, Radescu, Zlebcik, JHEP 1801 (2018) 070

$$x_a p^+, k_{t,a}$$
 a
 $z = x_a/x_b$ c $q_{t,c} \rightarrow \mu$
 $x_b p^+, k_{t,b}$ b
s van Kampen Dynamical resolution scale for TMDs, REF Workshop 2019, Pavia

The parton branching method: introduction

Properties of parton branching:

• Association μ' with emitted transverse momentum q_{\perp} :

$$q_{\perp}^2 = (1-z)^2 \mu'^2.$$
 (2)

Eq. (2) is angular ordering condition

• With angular ordering:
$$a(z) = b(z) = 1 - z$$

- Scale of the strong coupling: $\alpha_s(q_{\perp}^2) = \alpha_s((1-z)^2 \mu'^2)$ Calculation of \mathbf{k}_{i+1} from \mathbf{k}_i : $\mathbf{k}_i + (1-z_i)\mu'$

• Resolution scale z_M : resolvable \leftrightarrow non-resolvable region

Mee

Hautmann, Jung, Lelek, Radescu, Zlebcik, JHEP 1801 (2018) 070

$$x_a p^+, k_{t,a}$$
 a
 $z = x_a/x_b$ c $q_{t,c} \rightarrow \mu$
 $x_b p^+, k_{t,b}$ b
s van Kampen Dynamical resolution scale for TMDs, REF Workshop 2019, Pavia

The parton branching method: introduction

Properties of parton branching:

• Association μ' with emitted transverse momentum q_{\perp} :

$$q_{\perp}^2 = (1-z)^2 \mu'^2.$$
 (2)

 $\begin{array}{ccc} x_a p^+, k_{t,a} & a \\ \\ z = x_a / x_b & c & q_{t,c} \rightarrow \mu \\ \\ x_b p^+, k_{t,b} & b \end{array}$

Eq. (2) is angular ordering condition

- With angular ordering: a(z) = b(z) = 1 z
 - Scale of the strong coupling: $\alpha_s(q_{\perp}^2) = \alpha_s((1-z)^2 \mu'^2)$ Calculation of \mathbf{k}_{i+1} from \mathbf{k}_i : $\mathbf{k}_i + (1-z_i)\mu'$
- Resolution scale z_M : resolvable \leftrightarrow non-resolvable region

Focus in this work on Z_M

Hautmann, Jung, Lelek, Radescu, Zlebcik, JHEP 1801 (2018) 070

Hautmann, Lelek, Keersmaekers, van Kampen, Nucl. Phys. B949 (2019) 114795

Introduction Dynamical resolution scale

Angular ordering condition

• QCD colour coherence

Introduction Dynamical resolution scale

Angular ordering condition

- QCD colour coherence
- Order branchings according to their angle θ_i :

$$|q_{\perp,i}| = (1 - z_i)|k_{i-1}|\sin\theta_i$$
 (3)

Introduction Dynamical resolution scale

Angular ordering condition

- QCD colour coherence
- Order branchings according to their angle θ_i :

$$|q_{\perp,i}| = (1 - z_i)|k_{i-1}|\sin\theta_i$$
 (3)

• Associate the evolution variable μ' with the rescaled transverse momentum \bar{q}_{\perp} :

$$\mu' = \bar{q}_{\perp} = \frac{q_{\perp}}{1-z} \tag{4}$$

 \Rightarrow angular ordering condition

Dynamical resolution scale

Resolution parameter z_M separates resolvable (yellow regions) from non-resolvable (grey regions) color radiation

- Past PB calculations: fixed z_M close to 1
- New: dynamical $z_M(\mu')$

$$z_{M}(\mu') = 1 - \frac{q_{0}}{\mu'}$$
 $(q_{0} = q_{\perp,\min})$ (5)

Dynamical resolution scale

Resolution parameter z_M separates resolvable (yellow regions) from non-resolvable (grey regions) color radiation

- Past PB calculations: fixed z_M close to 1
- New: dynamical $z_M(\mu')$

$$z_{M}(\mu') = 1 - \frac{q_{0}}{\mu'}$$
 $(q_{0} = q_{\perp,\min})$ (5)

• When $x < 1 - q_0/\mu_0$ (case (b)): evolution goes down to μ_0 • When $x > 1 - q_0/\mu_0$ (case (a)): evolution goes down to $q_0/(1-x)$

Introduction Dynamical resolution scale

Dynamical resolution scale

$$z_M(\mu')=1-rac{q_0}{\mu'}$$

PB equation for integrated distributions $\tilde{f}_a(x,\mu) = \int d^2 \mathbf{k} \tilde{\mathcal{A}}_a(x,\mathbf{k},\mu^2)$

$$\begin{split} \tilde{f}_{a}(x,\mu^{2}) &= \Delta_{a}(\mu^{2},\mu_{0}^{2})\tilde{f}_{a}(x,\mu_{0}^{2}) + \sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \int_{x}^{1} dz \Theta(\underbrace{1-q_{0}/\mu'}_{z_{M}(\mu')} - z) \\ &\times \frac{\Delta_{a}(\mu^{2},\mu_{0}^{2})}{\Delta_{a}(\mu'^{2},\mu_{0}^{2})} P_{ab}^{(R)} \Big(z,\alpha_{s}\big((1-z)^{2}\mu'^{2}\big)\Big) \tilde{f}_{b}\left(\frac{x}{z},\mu'^{2}\right). \end{split}$$
(6)

Introduction Dynamical resolution scale

Dynamical resolution scale

$$z_{\mathcal{M}}(\mu')=1-rac{q_0}{\mu'}$$

PB equation for integrated distributions $\tilde{f}_a(x,\mu) = \int d^2 \mathbf{k} \tilde{\mathcal{A}}_a(x,\mathbf{k},\mu^2)$

$$\begin{split} \tilde{f}_{a}(x,\mu^{2}) &= \Delta_{a}(\mu^{2},\mu_{0}^{2})\tilde{f}_{a}(x,\mu_{0}^{2}) + \sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \int_{x}^{1} dz \Theta(\underbrace{1-q_{0}/\mu'}_{z_{M}(\mu')} - z) \\ &\times \frac{\Delta_{a}(\mu^{2},\mu_{0}^{2})}{\Delta_{a}(\mu'^{2},\mu_{0}^{2})} P_{ab}^{(R)} \Big(z, \alpha_{s} \big((1-z)^{2} \mu'^{2} \big) \Big) \tilde{f}_{b} \left(\frac{x}{z}, \mu'^{2} \right). \end{split}$$
(6)

• in limit $z_M \to 1 \& \alpha_s(q_\perp) \to \alpha_s(\mu')$: recover DGLAP (see [JHEP 1801 (2018) 070] for detailed numerical calculation)

Introduction Dynamical resolution scale

Dynamical resolution scale

$$z_{\mathcal{M}}(\mu')=1-rac{q_0}{\mu'}$$

PB equation for integrated distributions $\tilde{f}_a(x,\mu) = \int d^2 \mathbf{k} \tilde{\mathcal{A}}_a(x,\mathbf{k},\mu^2)$

$$\begin{split} \tilde{f}_{a}(x,\mu^{2}) &= \Delta_{a}(\mu^{2},\mu_{0}^{2})\tilde{f}_{a}(x,\mu_{0}^{2}) + \sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \int_{x}^{1} dz \Theta(\underbrace{1-q_{0}/\mu'}_{z_{M}(\mu')} - z) \\ &\times \frac{\Delta_{a}(\mu^{2},\mu_{0}^{2})}{\Delta_{a}(\mu'^{2},\mu_{0}^{2})} P_{ab}^{(R)} \Big(z, \alpha_{s} \big((1-z)^{2} \mu'^{2} \big) \Big) \tilde{f}_{b} \left(\frac{x}{z}, \mu'^{2} \right). \end{split}$$
(6)

- in limit $z_M \rightarrow 1 \& \alpha_s(q_\perp) \rightarrow \alpha_s(\mu')$: recover DGLAP (see [JHEP 1801 (2018) 070] for detailed numerical calculation)
- with dynamic z_M : agreement with CMW

Comparison with CMW [Catani, Marchesini, Webber, Nucl.Phys. B349 (1991) 635-654]

Equation (6) coincides with Markov process based evolution equation from [Marchesini & Webber, Nucl.Phys. B310 (1988) 461-526]

Introduction Dynamical resolution scale

Scale of α_s : avoidence of the Landau pole

$$\begin{split} \tilde{f}_{a}(x,\mu^{2}) &= \Delta_{a}(\mu^{2},\mu_{0}^{2})\tilde{f}_{a}(x,\mu_{0}^{2}) + \sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \int_{x}^{1} dz \Theta(\underbrace{1-q_{0}/\mu'}_{z_{M}}-z) \\ &\times \frac{\Delta_{a}(\mu^{2},\mu_{0}^{2})}{\Delta_{a}(\mu'^{2},\mu_{0}^{2})} P_{ab}^{(R)}\left(z,\alpha_{s}\left(\underbrace{(1-z)^{2}\mu'^{2}}_{\text{scale of strong coupling}}\right)\right) \tilde{f}_{b}\left(\frac{x}{z},\mu'^{2}\right). \end{split}$$

- Scale of strong coupling: $\alpha_s((1-z)^2\mu'^2) = \alpha_s(q_{\perp}^2)$
- Lowest scale in α_s corresponds to minimal q_{\perp} : $q_{\perp,\min}^-$
- $q_{\perp,\min} = q_0$, set $q_0 = 1$ GeV \implies perturbative calculations are always valid!

Introduction Dynamical resolution scale

PB: map evolution variable to transverse momentum

Change phase space variable μ' to q_{\perp} with angular ordering condition

Evolution in q⊥ down to q₀ (Red line) for all z (case a)
When x < z < 1 - q₀/µ₀ (case b): q⊥,min = (1 - z)µ₀ (Green line)

Dynamical resolution scale

PB: map evolution variable to transverse momentum

Change phase space variable μ' to q_{\perp} with angular ordering condition

• Evolution in q_{\perp} down to q_0 (Red line) for all z (case a) • When $x < z < 1 - q_0/\mu_0$ (case b): $q_{\perp,\min} = (1 - z)\mu_0$ (Green line) Subtraction term arises in evolution equation:

$$\begin{split} \tilde{f}_{a}(x,\mu^{2}) &= \Delta_{a}(\mu^{2},\mu_{0}^{2})\tilde{f}_{a}(x,\mu_{0}^{2}) + \sum_{b} \int \frac{dq_{\perp}^{2}}{q_{\perp}^{2}} \int_{x}^{1} dz \Big[\Theta(q_{\perp}^{2}-q_{0}^{2})\Theta(\mu^{2}(1-x)^{2}-q_{\perp}^{2}) \\ &\times \Theta(1-q_{\perp}/\mu-z) - \Theta(q_{\perp}^{2}-q_{0}^{2})\Theta(\mu_{0}^{2}(1-x)^{2}-q_{\perp}^{2})\Theta(1-q_{\perp}/\mu_{0}-z)\Big] \\ &\times \Delta_{a} \left(\mu^{2},\frac{q_{\perp}^{2}}{(1-z)^{2}}\right) P_{ab}^{(R)}\Big(z,\alpha_{s}(q_{\perp}^{2})\Big)\tilde{f}_{b}\left(\frac{x}{z},\frac{q_{\perp}^{2}}{(1-z)^{2}}\right) \end{split}$$
(7)

Mees van Kampen

Dynamical resolution scale for TMDs, REF Workshop 2019, Pavia

Single and multiple emission approaches Comparison KMRW and PB

Single emission \leftrightarrow multiple emission

	Multiple emission	Single emission
(z, μ')	CMW/PB	
(z,q_{\perp})	PB	KMRW

Single emission \leftrightarrow multiple emission

	Multiple emission	Single emission
(z, μ')	CMW/PB	
(z,q_{\perp})	PB	KMRW

Kimber Martin Ryskin Watt (KMRW) approach constructs TMDs in a single step [Kimber, Martin, Ryskin, Phys.Rev. D63 (2001) 114027] [Watt, Martin, Ryskin, Eur.Phys.J. C31 (2003) 73-89] [Martin, Ryskin, Watt, Eur.Phys.J. C66 (2010) 163-172]

$$\tilde{f}_{a}(x,\mu^{2}) = T_{a}(\mu^{2},\mu_{0}^{2})\tilde{f}_{a}(x,\mu_{0}^{2})
+ \sum_{b} \int_{\mu_{0}^{2}}^{q_{\perp}^{2},M} \frac{dq_{\perp}^{2}}{q_{\perp}^{2}} \left\{ \underbrace{T_{a}(\mu^{2},q_{\perp}^{2}) \int_{x}^{1-C(q_{\perp},\mu)} dz P_{ab}^{(R)}(z,\alpha_{s}(q_{\perp}^{2})) \tilde{f}_{b}\left(\frac{x}{z},q_{\perp}^{2}\right)}_{\text{TMD: } \tilde{f}_{a}(x,q_{\perp}^{2},\mu)} \right\}$$
(8)

[Golec-Biernat, Stasto, Phys.Lett. B781 (2018) 633-638], [Guiot, e-Print: arXiv:1910.09656] Ordering condition sets cut-off in q_{\perp} and z integration

- Strong ordering (SO): $C(q_{\perp}, \mu) = \frac{q_{\perp}}{\mu}, q_{\perp,M} = \mu(1-x)$
- Angular ordering (AO): $C(q_{\perp}, \mu) = \frac{q_{\perp}}{q_{\perp} + \mu}, q_{\perp,M} = \frac{\mu(1-x)}{x}$

Single and multiple emission approaches Comparison KMRW and PB

Comparison KMRW and PB

KMRW

$$\begin{split} \tilde{f}_{a}(x,\mu^{2}) &= T_{a}(\mu^{2},\mu_{0}^{2})\tilde{f}_{a}(x,\mu_{0}^{2}) \\ &+ \sum_{b} \int_{\mu_{0}^{2}}^{q_{\perp}^{2},M} \frac{dq_{\perp}^{2}}{q_{\perp}^{2}} \int_{x}^{1-C(q_{\perp},\mu)} dz T_{a}(\mu^{2},q_{\perp}^{2}) P_{ab}^{(R)}(z,\alpha_{s}(q_{\perp}^{2})) \tilde{f}_{b}\left(\frac{x}{z},q_{\perp}^{2}\right) \end{split}$$
(9)

Parton branching (angular ordering & dynamic z_M)

$$\begin{split} \tilde{f}_{a}(x,\mu^{2}) &= \Delta_{a}(\mu^{2},\mu_{0}^{2})\tilde{f}_{a}(x,\mu_{0}^{2}) \\ &+ \sum_{b} \int_{q_{0}^{2}}^{\mu^{2}(1-x)^{2}} \frac{dq_{\perp}^{2}}{q_{\perp}^{2}} \int_{x}^{1-\frac{q_{\perp}}{\mu}} dz \frac{\Delta_{a}(\mu^{2},\mu_{0}^{2})}{\Delta_{a}\left(\frac{q_{\perp}^{2}}{(1-z)^{2}},\mu_{0}^{2}\right)} P_{ab}^{(R)}\left(z,\alpha_{s}(q_{\perp}^{2})\right) \tilde{f}_{b}\left(\frac{x}{z},\frac{q_{\perp}^{2}}{(1-z)^{2}}\right) \end{split}$$
(10)

Single and multiple emission approaches Comparison KMRW and PB

Comparison KMRW and PB

KMRW

$$\begin{split} \tilde{f}_{a}(x,\mu^{2}) &= T_{a}(\mu^{2},\mu_{0}^{2})\tilde{f}_{a}(x,\mu_{0}^{2}) \\ &+ \sum_{b} \int_{\mu_{0}^{2}}^{q_{\perp}^{2},M} \frac{dq_{\perp}^{2}}{q_{\perp}^{2}} \int_{x}^{1-C(q_{\perp},\mu)} dz T_{a}(\mu^{2},q_{\perp}^{2}) P_{ab}^{(R)}(z,\alpha_{s}(q_{\perp}^{2})) \tilde{f}_{b}\left(\frac{x}{z},q_{\perp}^{2}\right) \end{split}$$
(9)

Parton branching (angular ordering & dynamic z_M)

$$\begin{split} \tilde{f}_{a}(x,\mu^{2}) &= \Delta_{a}(\mu^{2},\mu_{0}^{2})\tilde{f}_{a}(x,\mu_{0}^{2}) \\ &+ \sum_{b} \int_{q_{0}^{2}}^{\mu^{2}(1-x)^{2}} \frac{dq_{\perp}^{2}}{q_{\perp}^{2}} \int_{x}^{1-\frac{q_{\perp}}{\mu}} dz \frac{\Delta_{a}(\mu^{2},\mu_{0}^{2})}{\Delta_{a}\left(\frac{q_{\perp}^{2}}{(1-z)^{2}},\mu_{0}^{2}\right)} P_{ab}^{(R)}\left(z,\alpha_{s}(q_{\perp}^{2})\right) \tilde{f}_{b}\left(\frac{x}{z},\frac{q_{\perp}^{2}}{(1-z)^{2}}\right) \end{split}$$
(10)

• KMRW has no rescaling in: a) initial distributions \tilde{f}_b , b) Sudakov form factors $T_a \leftrightarrow \Delta_a$

Comparison KMRW and PB

KMRW

$$\begin{split} \tilde{f}_{a}(x,\mu^{2}) &= T_{a}(\mu^{2},\mu_{0}^{2})\tilde{f}_{a}(x,\mu_{0}^{2}) \\ &+ \sum_{b} \int_{\mu_{0}^{2}}^{q_{\perp}^{2},M} \frac{dq_{\perp}^{2}}{q_{\perp}^{2}} \int_{x}^{1-C(q_{\perp},\mu)} dz T_{a}(\mu^{2},q_{\perp}^{2}) P_{ab}^{(R)}(z,\alpha_{s}(q_{\perp}^{2})) \tilde{f}_{b}\left(\frac{x}{z},q_{\perp}^{2}\right) \end{split}$$
(9)

Parton branching (angular ordering & dynamic z_M)

$$\begin{split} \tilde{f}_{a}(x,\mu^{2}) &= \Delta_{a}(\mu^{2},\mu_{0}^{2})\tilde{f}_{a}(x,\mu_{0}^{2}) \tag{10} \\ &+ \sum_{b} \int_{q_{0}^{2}}^{\mu^{2}(1-x)^{2}} \frac{dq_{\perp}^{2}}{q_{\perp}^{2}} \int_{x}^{1-\frac{q_{\perp}}{\mu}} dz \frac{\Delta_{a}(\mu^{2},\mu_{0}^{2})}{\Delta_{a}\left(\frac{q_{\perp}^{2}}{(1-z)^{2}},\mu_{0}^{2}\right)} P_{ab}^{(R)}\left(z,\alpha_{s}(q_{\perp}^{2})\right) \tilde{f}_{b}\left(\frac{x}{z},\frac{q_{\perp}^{2}}{(1-z)^{2}}\right) \end{split}$$

- KMRW has no rescaling in: a) initial distributions \tilde{f}_b , b) Sudakov form factors $T_a \leftrightarrow \Delta_a$
- Differences in phase space limits (mostly pronounced in AO)

Single and multiple emission approaches Comparison KMRW and PB

Remarks on the Sudakov form factor

Parton branching

Sudakov is no resolvable branching probability:

$$\Delta_{a}(\mu^{2},\mu_{0}^{2}) = \exp\left\{-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu'^{2}}{\mu'^{2}}\int_{0}^{1-q_{0}/\mu'}dz \ z \ P_{ba}^{(R)}(\alpha_{s}((1-z)^{2}\mu'^{2}),z)\right\}.$$
 (11)

Product of two is:

$$\Delta_{a}(\mu^{2}, \tilde{\mu}^{2})\Delta_{a}(\tilde{\mu}^{2}, \mu_{0}^{2}) = \Delta_{a}(\mu^{2}, \mu_{0}^{2})$$
(12)

Single and multiple emission approaches Comparison KMRW and PB

Remarks on the Sudakov form factor

Parton branching

Sudakov is no resolvable branching probability:

$$\Delta_{a}(\mu^{2},\mu_{0}^{2}) = \exp\left\{-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu'^{2}}{\mu'^{2}}\int_{0}^{1-q_{0}/\mu'}dz \ z \ P_{ba}^{(R)}(\alpha_{s}((1-z)^{2}\mu'^{2}),z)\right\}.$$
 (11)

Product of two is:

$$\Delta_{a}(\mu^{2},\tilde{\mu}^{2})\Delta_{a}(\tilde{\mu}^{2},\mu_{0}^{2}) = \Delta_{a}(\mu^{2},\mu_{0}^{2})$$
(12)

<u>KMRW</u>

Sudakov of KMRW:

$$T_{a}(\mu^{2},\mu_{0}^{2}) = \exp\left\{-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}} \frac{dq_{\perp}^{2}}{q_{\perp}^{2}}\int_{0}^{1-C(q_{\perp},\mu)} dz \ z \ P_{ba}^{(R)}(z,q_{\perp})\right\}.$$
 (13)

Product of two is:

$$T_{a}(\mu^{2}, k_{\perp}^{2}) T_{a}(k_{\perp}^{2}, \mu_{0}^{2}) =$$

$$= T_{a}(\mu^{2}, \mu_{0}^{2}) \times \exp\left\{\sum_{b} \int_{\mu_{0}^{2}}^{k_{\perp}^{2}} \frac{dq_{\perp}^{2}}{q_{\perp}^{2}} \int_{1-C(q_{\perp}, k_{\perp})}^{1-C(q_{\perp}, \mu)} dz \ z \ P_{ba}^{(R)}(z, \alpha_{s}(q_{\perp}^{2}))\right\}$$
(14)

Remarks on the Sudakov form factor

Parton branching

Sudakov is no resolvable branching probability:

$$\Delta_{a}(\mu^{2},\mu_{0}^{2}) = \exp\left\{-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu'^{2}}{\mu'^{2}}\int_{0}^{1-q_{0}/\mu'}dz \ z \ P_{ba}^{(R)}(\alpha_{s}((1-z)^{2}\mu'^{2}),z)\right\}.$$
 (11)

Product of two is:

$$\Delta_{\mathfrak{a}}(\mu^2, \tilde{\mu}^2) \Delta_{\mathfrak{a}}(\tilde{\mu}^2, \mu_0^2) = \Delta_{\mathfrak{a}}(\mu^2, \mu_0^2)$$
(12)

<u>KMRW</u>

Sudakov of KMRW:

$$T_{a}(\mu^{2},\mu_{0}^{2}) = \exp\left\{-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}} \frac{dq_{\perp}^{2}}{q_{\perp}^{2}}\int_{0}^{1-C(q_{\perp},\mu)} dz \ z \ P_{ba}^{(R)}(z,q_{\perp})\right\}.$$
 (13)

Product of two is:

$$T_{a}(\mu^{2}, k_{\perp}^{2}) T_{a}(k_{\perp}^{2}, \mu_{0}^{2}) =$$

$$= T_{a}(\mu^{2}, \mu_{0}^{2}) \times \exp\left\{\sum_{b} \int_{\mu_{0}^{2}}^{k_{\perp}^{2}} \frac{dq_{\perp}^{2}}{q_{\perp}^{2}} \int_{1-C(q_{\perp}, k_{\perp})}^{1-C(q_{\perp}, \mu)} dz \ z \ P_{ba}^{(R)}(z, \alpha_{s}(q_{\perp}^{2}))\right\}$$
(14)

 \Rightarrow differences in the treatment of virtual and non-resolvable emissions!

TMDs iTMDs Z boson *p*_T spectrum

Numerical comparison: TMDs

MRW-CT10nlo is KMRW TMD constructed from integrated PDF CT10nlo

 $^1\mathsf{PB}$ last step is an invented way to simulate PB with a single emission

TMDs iTMDs Z boson *p*_T spectrum

Numerical comparison: TMDs

MRW-CT10nlo is KMRW TMD constructed from integrated PDF CT10nlo

• low k_{\perp} : bump at lower scale from single emission

 $^{^1\}mathsf{PB}$ last step is an invented way to simulate PB with a single emission

TMDs iTMDs Z boson *p*_T spectrum

Numerical comparison: TMDs

MRW-CT10nlo is KMRW TMD constructed from integrated PDF CT10nlo

- low k_{\perp} : bump at lower scale from single emission
- middle k_{\perp} : agreement KMRW and PB

 $^{^1\}mathsf{PB}$ last step is an invented way to simulate PB with a single emission

TMDs iTMDs Z boson *p*_T spectrum

Numerical comparison: TMDs

MRW-CT10nlo is KMRW TMD constructed from integrated PDF CT10nlo

- low k_{\perp} : bump at lower scale from single emission
- middle k_{\perp} : agreement KMRW and PB
- high k_{\perp} tail from radiative effects + Sudakov

¹PB last step is an invented way to simulate PB with a single emission

iTMDs Z boson p+ spectrum

Numerical comparison: integrated TMDs

• KMRW integrated over full k_{\perp} domain deviates strongly from CT10nlo

Parton branching method TMDs Comparison other approaches TMDs Results Z boson p_T spectrum

Z boson p_T spectrum

- Compare simulations with LHC data (ATLAS, $\sqrt{s} = 8$ GeV [Eur.Phys.J. C76 (2016) no.5, 291])
- Compare PB fixed z_M, PB dynamical z_M and KMRW

Use of dynamical resolution scale improves shape of DY spectrum!

- Fixed z_M : model for freezing scale in α_s
- Dynamic z_M : $q_{\perp} > q_0$, automatically avoids Landau pole region
- KMRW does not describe shape, both at low and high p_T

PB approach for TMDs takes into account soft-gluon emissions ($z \rightarrow 1$) and all transverse momenta (q_{\perp}) from branchings in QCD evolution

- We performed studies of PB TMDs with dynamical z_M for the first time
- PB with dynamical resolution scale:
 - Coincides with CMW at integrated level
 - ${\scriptstyle \bullet}\,$ Differs significantly from KMRW both at low and high k_{\perp}
- We found sensitivity of the low p_T DY spectrum at LHC to dynamical resolution scale
- Future: fit PB TMDs with dynamic z_M to DIS and DY

Backup

Ordering condition, resolution scale dependence

PB mapping μ' to q_{\perp}

high x

$$\begin{split} \tilde{f}_{a}(x,\mu^{2}) &= \Delta_{a}(\mu^{2},\mu_{0}^{2})\tilde{f}_{a}(x,\mu_{0}^{2}) + \sum_{b} \int_{q_{0}^{2}}^{\mu^{2}(1-x)^{2}} \frac{dq_{\perp}^{2}}{q_{\perp}^{2}} \int_{x}^{1} dz \\ &\times \Theta(1-q_{\perp}/\mu-z)\Delta_{a}\left(\mu^{2},\frac{q_{\perp}^{2}}{(1-z)^{2}}\right) \\ &\times P_{ab}^{(R)}\left(z,\alpha_{s}(q_{\perp}^{2})\right)\tilde{f}_{b}\left(\frac{x}{z},\frac{q_{\perp}^{2}}{(1-z)^{2}}\right) \end{split}$$
(15)

low x (with subtraction term)

$$\begin{split} \tilde{f}_{a}(x,\mu^{2}) &= \Delta_{a}(\mu^{2},\mu_{0}^{2})\tilde{f}_{a}(x,\mu_{0}^{2}) + \sum_{b} \int_{q_{0}^{2}} \frac{dq_{\perp}^{2}}{q_{\perp}^{2}} \int_{x}^{1} dz \\ &\times \left[\Theta(\mu^{2}(1-x)^{2} - q_{\perp}^{2})\Theta(1 - q_{\perp}/\mu - z) - \Theta(\mu_{0}^{2}(1-x)^{2} - q_{\perp}^{2})\Theta(1 - q_{\perp}/\mu_{0} - z)\right] \\ &\times \Delta_{a}\left(\mu^{2}, \frac{q_{\perp}^{2}}{(1-z)^{2}}\right) P_{ab}^{(R)}\left(z, \alpha_{s}(q_{\perp}^{2})\right) \tilde{f}_{b}\left(\frac{x}{z}, \frac{q_{\perp}^{2}}{(1-z)^{2}}\right) \end{split}$$
(16)

Mees van Kampen

Dynamical resolution scale for TMDs, REF Workshop 2019, Pavia

Gluon TMDs $\mu = 100 \text{ GeV}$

Up quark TMDs

TMDs versus x

Mees van Kampen