

multi-jet merging in the PB method

<u>A. Bermúdez Martínez</u> F. Hautmann H. Jung

REF 2019 25th November, 2019

Outline

- \circ PB method and Z $p_{\rm T}$ spectrum
- Multi-jet merging
- Differential jet rate plots
- \circ Application to Z production
- Merging uncertainty
- Summary and conclusions

PB method and Z p_T spectrum

TMDs and PB method

- small momentum transfer very well described \rightarrow see Qun's talk

arXiv:1909.04133 [hep-ex] CERN-EP-2019-175

TMDs and PB method

- small momentum transfer very well described \rightarrow see Qun's talk
- matching to NLO matrix elements achieved \rightarrow see Qun's talk

Phys.Rev.D 100, 074027 (2019)

TMDs and PB method

- small momentum transfer very well described ightarrow see Qun's talk
- matching to NLO matrix elements achieved \rightarrow see Qun's talk
- \rightarrow including higher order corrections at high $p_{\rm T}$

Phys.Rev.D 100, 074027 (2019)

 \circ Z production as an example:

- 1st emission ME: $\mathcal{R}(p_t^2)$

 \circ Z production as an example:

- 1st emission ME: $\mathcal{R}(p_t^2)$

• Z production as an example:

- 1st emission ME: $\mathcal{R}(p_t^2)$

• Z production as an example:

- 1st emission PS: $\mathcal{R}^{PS}(p_t^2) \sim \alpha_s(p_t^2)$

- 1st emission ME: $\mathcal{R}(p_t^2) \sim \alpha_s(\mu^2)$

• Z production as an example:

- 1st emission PS: $\mathcal{R}^{PS}(p_t^2) \sim \alpha_s(p_t^2)$

- 1st emission ME: $\mathcal{R}(p_t^2) \longrightarrow \mathcal{R}(p_t^2) \times \alpha_s(p_t^2) / \alpha_s(\mu^2)$

MLM merging scheme

- matching partons and jets in physical space
- soft/collinear region suppressed by vetoing events
- reproducing the shower Sudakov

 \circ merging scale

- separates soft/collinear and hard regions
- chosen value: 20 GeV
- matrix elements
- Madgraph LO
- up to 3 partons in the final state
- ME includes α_s reweighting

Differential jet rate plots

- used to test the merging implementation
- $d_{n,n+1}$ measures the transition scale from (n+1)-jet to n-jet
- approximately reproduce the merging scale phase space

- used to test the merging implementation
- $d_{n,n+1}$ measures the transition scale from (n+1)-jet to n-jet
- approximately reproduce the merging scale phase space

- used to test the merging implementation
- $d_{n,n+1}$ measures the transition scale from (n+1)-jet to n-jet
- approximately reproduce the merging scale phase space

- used to test the merging implementation
- $d_{n,n+1}$ measures the transition scale from (n+1)-jet to n-jet
- approximately reproduce the merging scale phase space

- used to test the merging implementation
- $d_{n,n+1}$ measures the transition scale from (n+1)-jet to n-jet
- approximately reproduce the merging scale phase space

- used to test the merging implementation
- $d_{n,n+1}$ measures the transition scale from (n+1)-jet to n-jet
- approximately reproduce the merging scale phase space

- used to test the merging implementation
- $d_{n,n+1}$ measures the transition scale from (n+1)-jet to n-jet
- approximately reproduce the merging scale phase space

- used to test the merging implementation
- $d_{n,n+1}$ measures the transition scale from (n+1)-jet to n-jet
- approximately reproduce the merging scale phase space

- used to test the merging implementation
- $d_{n,n+1}$ measures the transition scale from (n+1)-jet to n-jet
- approximately reproduce the merging scale phase space
- $d_{{
 m n},{
 m n}+1}
 ightarrow$ scale in the $k_{
 m T}$ clustering algorithm

- used to test the merging implementation
- $d_{n,n+1}$ measures the transition scale from (n+1)-jet to n-jet
- approximately reproduce the merging scale phase space
- \rightarrow DJR plots smooth

- used to test the merging implementation
- $d_{n,n+1}$ measures the transition scale from (n+1)-jet to n-jet
- approximately reproduce the merging scale phase space
- \rightarrow DJR plots smooth
- merging scale qcut $\sim 1/5 imes Q$

Application to Z production

Z and third jet p_{T} spectra

- corrections improve significantly high $p_{\rm T}$ tail
- higher corrections become gradually important
- $p_{\rm T}$ of the third jet is smooth

Z and third jet p_{T} spectra

- corrections improve significantly high $p_{\rm T}$ tail
- higher corrections become gradually important
- $p_{\rm T}$ of the third jet is smooth
- change in the LO cross section $\sim 8\%$

Merging uncertainty

- merging scale variation
- effects around the merging scale
- 20% qcut variation $\Rightarrow \sim 5\%$ variation in Z $p_{\rm T}$ spectrum
- no important effect in the inclusive cross section

LO merging and MC@NLO matching comparison

- take Z + 0,1 merged prediction

LO merging and MC@NLO matching comparison

- take Z + 0,1 merged prediction
- apply NLO K-factor

LO merging and MC@NLO matching comparison

- take Z + 0,1 merged prediction
- apply NLO K-factor
- compare to MC@NLO prediction (Phys.Rev.D 100, 074027 (2019))

→ very good agreement is achieved!

Summary

 \circ MLM style multi-jet merging has been applied to PB-TMD events for the first time

 \circ Z + up to 3 partons has been merged giving an increasingly good agreement with the data

 \circ smooth DJR as well as exclusive jet $p_{\rm T}$

 \circ 20% qcut variation $\Rightarrow \sim 5\%$ variation in Z $p_{\rm T}$ spectrum

 \circ Z + 1 LO + TMDPS (\times K-factor) is in very good agreement with the MC@NLO PBTMD result

Outlook

 \circ application to off-shell matrix elements events

 \circ extension to NLO multi-jet merging

16/16