

multi-jet merging in the PB method

A. Bermúdez Martínez
F. Hautmann H. Jung

REF 2019

$25^{\text {th }}$ November, 2019

Outline

- PB method and $Z p_{\text {T }}$ spectrum
- Multi-jet merging
- Differential jet rate plots
- Application to Z production
- Merging uncertainty
- Summary and conclusions

PB method and $Z p_{\top}$ spectrum

TMDs and PB method

- small momentum transfer very well described \rightarrow see Qun's talk

TMDs and PB method

- small momentum transfer very well described \rightarrow see Qun's talk - matching to NLO matrix elements achieved \rightarrow see Qun's talk

Phys.Rev.D 100, 074027 (2019)

TMDs and PB method

- small momentum transfer very well described \rightarrow see Qun's talk
- matching to NLO matrix elements achieved \rightarrow see Qun's talk
\rightarrow including higher order corrections at high p_{T}

Phys.Rev.D 100, 074027 (2019)

Multi-jet merging

multi-jet merging

- Z production as an example:

- $1^{\text {st }}$ emission PS: $\mathcal{R}^{P S}\left(p_{t}^{2}\right) \times \exp \left[-\int_{p_{t}^{2}} d p_{t}^{\prime 2} \frac{\mathcal{R}^{P S}\left(p_{t}^{\prime 2}\right)}{\mathcal{B}}\right]$
- $1^{\text {st }}$ emission ME: $\mathcal{R}\left(p_{t}^{2}\right)$

multi-jet merging

- Z production as an example:

- $1^{\text {st }}$ emission PS: $\mathcal{R}^{P S}\left(p_{t}^{2}\right) \times \exp \left[-\int_{p_{t}^{2}} d p_{t}^{\prime 2} \frac{\mathcal{R}^{P S}\left(p_{t}^{\prime 2}\right)}{\mathcal{B}}\right]$
- $1^{\text {st }}$ emission ME: $\mathcal{R}\left(p_{t}^{2}\right)$

multi-jet merging

- Z production as an example:

Parton shower

- $1^{\text {st }}$ emission PS: $\mathcal{R}^{P S}\left(p_{t}^{2}\right) \times \exp \left[-\int_{p_{t}^{2}} d p_{t}^{\prime 2} \frac{\mathcal{R}^{P S}\left(p_{t}^{\prime 2}\right)}{\mathcal{B}}\right]$
- $1^{\text {st }}$ emission ME: $\mathcal{R}\left(p_{t}^{2}\right)$

multi-jet merging

- Z production as an example:

- $1^{\text {st }}$ emission PS: $\mathcal{R}^{P S}\left(p_{t}^{2}\right) \times \exp \left[-\int_{p_{t}^{2}} d p_{t}^{\prime 2} \frac{\mathcal{R}^{P S}\left(p_{t}^{\prime 2}\right)}{\mathcal{B}}\right]$
- $1^{\text {st }}$ emission ME: $\mathcal{R}\left(p_{t}^{2}\right) \longrightarrow \mathcal{R}\left(p_{t}^{2}\right) \times \exp \left[-\int_{p_{t}^{2}} d p_{t}^{\prime 2} \frac{\mathcal{R}^{P S}\left(p_{t}^{\prime 2}\right)}{\mathcal{B}}\right]$

multi-jet merging

- Z production as an example:

multi-jet merging

- Z production as an example:

- $1^{\text {st }}$ emission PS: $\mathcal{R}^{P S}\left(p_{t}^{2}\right) \times \exp \left[-\int_{p_{t}^{2}} d p_{t}^{\prime 2} \frac{\mathcal{R}^{P S}\left(p_{t}^{\prime 2}\right)}{\mathcal{B}}\right]$
- $1^{\text {st }}$ emission ME: $\mathcal{R}\left(p_{t}^{2}\right) \longrightarrow \mathcal{R}\left(p_{t}^{2}\right) \times \exp \left[-\int_{p_{t}^{2}} d p_{t}^{\prime 2} \frac{\mathcal{R}^{P S}\left(p_{t}^{\prime 2}\right)}{\mathcal{B}}\right]$

multi-jet merging

- Z production as an example:

- $1^{\text {st }}$ emission PS: $\mathcal{R}^{P S}\left(p_{t}^{2}\right) \sim \alpha_{s}\left(p_{t}^{2}\right)$
- $1^{\text {st }}$ emission ME: $\mathcal{R}\left(p_{t}^{2}\right) \sim \alpha_{s}\left(\mu^{2}\right)$

multi-jet merging

- Z production as an example:

- $1^{\text {st }}$ emission PS: $\mathcal{R}^{P S}\left(p_{t}^{2}\right) \sim \alpha_{s}\left(p_{t}^{2}\right)$
- $1^{\text {st }}$ emission ME: $\mathcal{R}\left(p_{t}^{2}\right) \quad \rightarrow \mathcal{R}\left(p_{t}^{2}\right) \times \alpha_{s}\left(p_{t}^{2}\right) / \alpha_{s}\left(\mu^{2}\right)$

MLM merging scheme

- matching partons and jets in physical space
- soft/collinear region suppressed by vetoing events
- reproducing the shower Sudakov
- merging scale
- separates soft/collinear and hard regions
- chosen value: 20 GeV
- matrix elements
- Madgraph LO
- up to 3 partons in the final state
- ME includes α_{s} reweighting

Differential jet rate plots

DJR plots

- used to test the merging implementation
- $d_{n, n+1}$ measures the transition scale from ($n+1$)-jet to n-jet
- approximately reproduce the merging scale phase space

DJR plots

- used to test the merging implementation
- $d_{n, n+1}$ measures the transition scale from ($n+1$)-jet to n-jet
- approximately reproduce the merging scale phase space

DJR plots

- used to test the merging implementation
- $d_{n, n+1}$ measures the transition scale from ($n+1$)-jet to n-jet
- approximately reproduce the merging scale phase space

DJR plots

- used to test the merging implementation
- $d_{n, n+1}$ measures the transition scale from ($n+1$)-jet to n-jet
- approximately reproduce the merging scale phase space

DJR plots

- used to test the merging implementation
- $d_{n, n+1}$ measures the transition scale from ($n+1$)-jet to n-jet
- approximately reproduce the merging scale phase space

DJR plots

- used to test the merging implementation
- $d_{n, n+1}$ measures the transition scale from ($n+1$)-jet to n-jet
- approximately reproduce the merging scale phase space

DJR plots

- used to test the merging implementation
- $d_{n, n+1}$ measures the transition scale from ($n+1$)-jet to n-jet
- approximately reproduce the merging scale phase space

DJR plots

- used to test the merging implementation
- $d_{n, n+1}$ measures the transition scale from ($n+1$)-jet to n-jet
- approximately reproduce the merging scale phase space

DJR plots

- used to test the merging implementation
- $d_{n, n+1}$ measures the transition scale from ($n+1$)-jet to n-jet
- approximately reproduce the merging scale phase space
- $d_{\mathrm{n}, \mathrm{n}+1} \rightarrow$ scale in the k_{T} clustering algorithm

DJR plots

- used to test the merging implementation
- $d_{n, n+1}$ measures the transition scale from ($n+1$)-jet to n-jet
- approximately reproduce the merging scale phase space
\rightarrow DJR plots smooth

d01

d12

DJR plots

- used to test the merging implementation
- $d_{n, n+1}$ measures the transition scale from ($n+1$)-jet to n-jet
- approximately reproduce the merging scale phase space
\rightarrow DJR plots smooth
- merging scale qcut $\sim 1 / 5 \times Q$

Application to Z production

Z and third jet p_{T} spectra

- corrections improve significantly high p_{T} tail
- higher corrections become gradually important
- $p_{\text {T }}$ of the third jet is smooth

Z and third jet p_{T} spectra

- corrections improve significantly high p_{T} tail
- higher corrections become gradually important
- $p_{\text {T }}$ of the third jet is smooth
- change in the LO cross section $\sim 8 \%$

Merging uncertainty

- merging scale variation
- effects around the merging scale
- 20\% qcut variation $\Rightarrow \sim 5 \%$ variation in $Z p_{\text {T }}$ spectrum
- no important effect in the inclusive cross section

LO merging and MC@NLO matching comparison

- take $Z+0,1$ merged prediction

LO merging and MC@NLO matching comparison

- take $Z+0,1$ merged prediction
- apply NLO K-factor

LO merging and MC@NLO matching comparison

- take $Z+0,1$ merged prediction
- apply NLO K-factor
- compare to MC@NLO prediction (Phys.Rev.D 100, 074027 (2019))
\longrightarrow very good agreement is achieved!

Summary

- MLM style multi-jet merging has been applied to PB-TMD events for the first time
- $Z+u p$ to 3 partons has been merged giving an increasingly good agreement with the data
- smooth DJR as well as exclusive jet $p_{\text {T }}$
- 20% qcut variation $\Rightarrow \sim 5 \%$ variation in $Z p_{\text {T }}$ spectrum
$\circ \mathrm{Z}+1 \mathrm{LO}+$ TMDPS (\times K-factor) is in very good agreement with the MC@NLO PBTMD result

Outlook

- application to off-shell matrix elements events
- extension to NLO multi-jet merging

