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Outline

◦ PB method and Z pT spectrum
◦ Multi-jet merging
◦ Differential jet rate plots
◦ Application to Z production
◦ Merging uncertainty
◦ Summary and conclusions
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PB method and Z pT spectrum
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TMDs and PB method
- small momentum transfer very well described → see Qun’s talk

- matching to NLO matrix elements achieved → see Qun’s talk
→ including higher order corrections at high pT

arXiv:1909.04133 [hep-ex]
CERN-EP-2019-175
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Multi-jet merging
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multi-jet merging

◦ Z production as an example:

- 1st emission PS: RPS(p2t ) × exp

[
−
∫
p2t
dp′2t

RPS(p′2t )

B

]
- 1st emission ME: R(p2t ) −→ R(p2t )× exp

[
−
∫
p2t
dp′2t

RPS(p′2t )

B

]



6/16

multi-jet merging

◦ Z production as an example:

- 1st emission PS: RPS(p2t ) × exp

[
−
∫
p2t
dp′2t

RPS(p′2t )

B

]
- 1st emission ME: R(p2t ) −→ R(p2t )× exp

[
−
∫
p2t
dp′2t

RPS(p′2t )

B

]



6/16

multi-jet merging

◦ Z production as an example:

- 1st emission PS: RPS(p2t ) × exp

[
−
∫
p2t
dp′2t

RPS(p′2t )

B

]
- 1st emission ME: R(p2t ) −→ R(p2t )× exp

[
−
∫
p2t
dp′2t

RPS(p′2t )

B

]



6/16

multi-jet merging

◦ Z production as an example:

- 1st emission PS: RPS(p2t ) × exp

[
−
∫
p2t
dp′2t

RPS(p′2t )

B

]
- 1st emission ME: R(p2t ) −→ R(p2t )×exp

[
−
∫
p2t
dp′2t

RPS(p′2t )

B

]



6/16

multi-jet merging

◦ Z production as an example:

- 1st emission PS: RPS(p2t ) × exp

[
−
∫
p2t
dp′2t

RPS(p′2t )

B

]
- 1st emission ME: R(p2t ) −→ R(p2t )×exp

[
−
∫
p2t
dp′2t

RPS(p′2t )

B

]



6/16

multi-jet merging

◦ Z production as an example:

- 1st emission PS: RPS(p2t ) × exp

[
−
∫
p2t
dp′2t

RPS(p′2t )

B

]
- 1st emission ME: R(p2t ) −→ R(p2t )×exp

[
−
∫
p2t
dp′2t

RPS(p′2t )

B

]



6/16

multi-jet merging

◦ Z production as an example:

- 1st emission PS: RPS(p2t ) ∼ αs(p
2
t )
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multi-jet merging

◦ Z production as an example:

- 1st emission PS: RPS(p2t ) ∼ αs(p
2
t )

[
p′2t

RPS(p′2t )

B

]
- 1st emission ME: R(p2t ) → R(p2t )×αs(p

2
t )/αs(µ

2)

[
RPp2t
B

]
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MLM merging scheme
- matching partons and jets in physical space
- soft/collinear region suppressed by vetoing events
- reproducing the shower Sudakov

◦ merging scale
- separates soft/collinear and hard regions
- chosen value: 20 GeV

◦ matrix elements
- Madgraph LO
- up to 3 partons in the final state
- ME includes αs reweighting
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Differential jet rate plots
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DJR plots
- used to test the merging implementation
- dn,n+1 measures the transition scale from (n+1)-jet to n-jet
- approximately reproduce the merging scale phase space

- dn,n+1 → scale in the kT clustering algorithm
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DJR plots
- used to test the merging implementation
- dn,n+1 measures the transition scale from (n+1)-jet to n-jet
- approximately reproduce the merging scale phase space
→ DJR plots smooth

- merging scale qcut ∼ 1/5× Q
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DJR plots
- used to test the merging implementation
- dn,n+1 measures the transition scale from (n+1)-jet to n-jet
- approximately reproduce the merging scale phase space
→ DJR plots smooth
- merging scale qcut ∼ 1/5× Q
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Application to Z production
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Z and third jet pT spectra

- corrections improve significantly high pT tail
- higher corrections become gradually important
- pT of the third jet is smooth

- change in the LO cross section ∼ 8%
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Z and third jet pT spectra

- corrections improve significantly high pT tail
- higher corrections become gradually important
- pT of the third jet is smooth
- change in the LO cross section ∼ 8%
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Merging uncertainty

- merging scale variation
- effects around the merging scale
- 20% qcut variation ⇒∼ 5% variation in Z pT spectrum
- no important effect in the inclusive cross section
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LO merging and MC@NLO matching comparison

- take Z + 0,1 merged prediction

- apply NLO K-factor
- compare to MC@NLO prediction (Phys.Rev.D 100, 074027 (2019))

−→ very good agreement is achieved!
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Summary

◦ MLM style multi-jet merging has been applied to PB-TMD
events for the first time

◦ Z + up to 3 partons has been merged giving an increasingly
good agreement with the data

◦ smooth DJR as well as exclusive jet pT

◦ 20% qcut variation ⇒∼ 5% variation in Z pT spectrum

◦ Z + 1 LO + TMDPS (× K-factor) is in very good
agreement with the MC@NLO PBTMD result

Outlook

◦ application to off-shell matrix elements events

◦ extension to NLO multi-jet merging
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