Diffractive leptoproduction of ρ and ϕ light vector mesons via small-x unintegrated gluon density

Andrèe Dafne Bolognino

ad.bolognino@unical.it

UNIVERSITÀ DELLA CALABRIA DIPARTIMENTO DI FISICA

Università della Calabria & INFN-Cosenza Italy

in collaboration with F.G. Celiberto, D.Yu. Ivanov, A. Papa and W. Schäfer, A. Szczurek

Resummation, Evolution, Factorization 2019

Pavia - Italy November 25th - 29th, 2019

Introduction	Theoretical framework 0000	Results 00000000000	Conclusions and Outlook
Outline			

- Motivation
- Unintegrated Gluon Distribution (UGD)
- Leptoproduction of light vector mesons
- 2 Theoretical framework
 - Helicity Amplitudes in κ_{T} -factorization
 - UGD models
 - \bullet Cross section and $b(\mathbf{Q}^2)\text{-slope}$ parametrization

3 Results

- Numerical results
- 4 Conclusions and Outlook
 - Conclusions
 - Outlook

Introduction	Theoretical framework	Results	Conclusions and Outlook
0000			
Motivation			
Motivat	tion		

▶ Parton densities are relevant to the search for new Physics

They describe the internal structure of the nucleon in terms of its elementary components (quarks and gluons)

- \Longrightarrow enter the expression for cross sections
- \implies nonperturbative objects
- \Longrightarrow can be extracted from experiments through global fits
- Several types of distributions...
 - exhibit particular universality properties
 - obey distinct evolution equations
 - respect different types of factorization theorems

Introduction	Theoretical framework	Results	Conclusions and Outlook
0000			
Motivation			
A 1	f		

...A brief overview

Integrated parton densities:

- ▶ PDF (or collinear) factorization
 - inclusive processes
 - $\kappa_{\rm T} \sim$ hardest scale

Unintegrated parton densities:

TMD factorization

- inclusive processes
- $\kappa_{\rm T} \ll$ hardest scale

► GPD factorization

- exclusive processes
- skewness effects

- **κ**_T-factorization</sub> (or small-*x* factorization)
 - inclusive or exclusive processes
 - small-x, large κ_T
 - Unintegrated gluon distribution

Introduction	Theoretical framework	Results	Conclusions and Outlook
0000			
Unintegrated Gluon Distribut	tion (UGD)		
What is th	e UGD?		

- ◊ DIS: conventionally described in terms of PDFs
- $\diamond\,$ less inclusive processes: need to use distributions unintegrated over the parton $\kappa_{\rm T}$
- example: virtual photoabsorption in κ_T-factorization

$$\sigma_{\mathsf{tot}}(\gamma^* p \to X) = \operatorname{Im}_s \left\{ \mathcal{A}(\gamma^* p \to \gamma^* p) \right\} \equiv \Phi_{\gamma^* \to \gamma^*} \circledast \mathcal{F}(\mathsf{x}, \kappa^2)$$

- $\diamond \mathcal{F}(x,\kappa^2)$ is the unintegrated gluon distribution (UGD) in the proton
- ▶ small-x limit: UGD = [BFKL gluon ladder] \circledast [proton impact factor]

Theoretical framework Introduction

Results

Leptoproduction of light vector mesons

Leptoproduction of ρ and ϕ mesons at HERA

e - p collisions provide

 $\gamma^* + \text{proton} \longrightarrow V + \text{proton}$...exclusive process!

- V: ρ, φ
- High-energy regime: $s \equiv W^2 \gg Q^2 \gg \Lambda_{\rm OCD}^2 \Longrightarrow \text{small } x = \frac{Q^2}{W^2}$

• photon virtuality Q is the hard scale of the process

 \blacktriangleright **Process solved in helicity** \Longrightarrow probe cross sections in the HERA energy range:

H1 \cdot 2.5 GeV² < Q² < 60 GeV² 35 GeV < W < 180 GeV

ZEUS: 2 GeV² < Q^2 < 60 GeV² 32 GeV < W < 180 GeV

▶ HERA data available for σ_L , σ_T , σ_{TOT}

[H1 collaboration: F.D. Aaron et al., JHEP 05 032 (2010)] [ZEUS collaboration: S. Chekanov et al, Nucl. Phys. B 718 (2005)] Introduction Theoretical framework 0000 Φ000 Helicity Amplitudes in κ_T-factorization Results

Conclusions and Outlook

Helicity Amplitudes in κ_{T} -factorization

Leading helicity amplitudes are known

Assumption:

- $\operatorname{Im}_{s} \left\{ \mathcal{A}(\gamma^{*} p \rightarrow V p) \right\}$
- same W- and t-dependence for T_{11} and T_{00}
 - $\rightarrow\,$ same physical mechanism, scattering of small transverse size of dipole on the proton target, at work $\implies\,\kappa_{T}\text{-}factorization$

$$T_{\lambda_V \lambda_\gamma}(s; Q^2) = is \int \frac{d^2\kappa}{(\kappa^2)^2} \Phi^{\gamma^*(\lambda_\gamma) \to V(\lambda_V)}(\kappa^2, Q^2) \mathcal{F}(x, \kappa^2), \quad x = \frac{Q^2}{s}$$

Interesting transitions:

•
$$\gamma_L^* \to V_L$$
 encoded by $\Phi \gamma_L^* \to V_L$
• $\gamma_T^* \to V_T$ encoded by $\Phi \gamma_T^* \to V_T$

 $V = \rho$, ϕ via distribution amplitudes (DAs): $\varphi(y) = \varphi^{WW}(y) + \varphi^{gen}(y)$

$$\implies$$
 DAs enter $\Phi^{\gamma^* \rightarrow V} = [H_{LO}] \circledast [DA]$

	Theoretical framework	Results	Conclusions and Outlook
	0000		
Helicity Amplitudes in	κ _T -factorization		
T_{11} and	T ₀₀		

Assumption:

• Wandzura-Wilczek (WW) approximation \longrightarrow genuine terms neglected $T_{11} = is \frac{2BC}{Q^2} \int \frac{d^2\kappa}{(\kappa^2)^2} \mathcal{F}(x,\kappa^2) \int_0^1 \frac{dy}{(y\bar{y}+\tau)} \varphi^{WW}_+(y,\mu^2) \frac{\alpha(\alpha+2y\bar{y}+2\tau)}{(\alpha+y\bar{y}+\tau)^2} + o(\tau^2)$ $T_{00} = is \frac{4BC}{Q} \int \frac{d^2\kappa}{(\kappa^2)^2} \mathcal{F}(x,\kappa^2) \int_0^1 dy \frac{y\bar{y}}{(y\bar{y}+\tau)} \left(\frac{\alpha}{\alpha+y\bar{y}+\tau}\right) \varphi^{as}_1(y,\mu^2)$ where $B = \frac{\pi\alpha_s f_V e_V}{N}$, $C = \sqrt{4\pi\alpha_{em}}$, $\tau = m_q^2/Q^2$, $\alpha = \kappa^2/Q^2$.

• Generalized massive formula: $\tau = 0 \longrightarrow$ no quark mass $\implies \rho$ -production $\tau \neq 0 \longrightarrow$ with quark mass $\implies \phi$ -production

⇒ Vector meson-DAs employed:

- asymptotic $\varphi_1^{as}(y) \xrightarrow{fixing} a_2(\mu^2) = 0$
- $\varphi^{\rm WW}_+(y,\mu^2) = (2y-1)\varphi^{\rm WW}_{1T}(y,\mu^2) + \varphi^{\rm WW}_{AT}(y,\mu^2)$

	Theoretical framework	Results	Conclusions and Outlook
	0000		
UGD models			
UGD mod	els		

 $\implies \mathcal{F}(x,\kappa^2)$ has to be modeled!

Following UGD models are selected:

Ivanov-Nikolaev:

soft and hard components $\xrightarrow{\text{to probe}}$ different regions of κ

[I. P. Ivanov and N. N. Nikolaev, *Phys. Rev.* D 65 (2002)]

GBW:

FT of dipole cross section

 $\implies {\rm evolution\ saturation\ scale} \\ {\rm is\ not\ needed} \\$

∜

Standard GBW model

[K.J. Golec-Biernat, M. Wüsthoff, Phys. Rev. D 59 (1998) 014017]

Cross section and $b(Q^2)$ -slope parametrization

Polarized cross sections:

$$\sigma_L \left(\gamma^* \, p \to V \, p \right) = \frac{1}{16\pi b(Q^2)} \frac{\left| \mathsf{T}_{00}(\mathbf{s}; \mathbf{Q}^2) \right|^2}{W^2}$$
$$\sigma_T \left(\gamma^* \, p \to V \, p \right) = \frac{1}{16\pi b(Q^2)} \frac{\left| \mathsf{T}_{11}(\mathbf{s}; \mathbf{Q}^2) \right|^2}{W^2}$$

▶ $b(Q^2)$ -slope for light vector mesons:

$$b(Q^2)pprox eta_0-eta_1\,\log\left[rac{Q^2+m_V^2}{m_{J/\psi}^2}
ight]+rac{eta_2}{Q^2+m_V^2}\,,$$

for φ-meson:

$$egin{aligned} η_0 = 7.0 \,\, {
m GeV^{-2}}, \,\, eta_1 = 1.1 \,\, {
m GeV^{-2}}, \ η_2 = 1.1; \end{aligned}$$

• for ρ -meson:

$$eta_0 = 6.5 \ {
m GeV}^{-2}, \ eta_1 = 1.2 \ {
m GeV}^{-2}, \ eta_2 = 1.6.$$

[J. Nemchik et al., J. Exp. Theor. Phys. 86 (1998) 1054]

000		

Numerical results

 ϕ -production

	Theoretical framework	Results	Conclusions and Outlook
		0000000000	
Numerical results			

ϕ -production - Quark mass m_q effect on σ_L

- ▶ WW approximation
- GBW UGD employed

[A.D. Bolognino, W. Schäfer, A. Szczurek (in progress)]

• Crucial effect of quark mass m_q in order to catch data

	Theoretical framework	Results	Conclusions and Outlook
		0000000000	
Numerical results			

ϕ -production - Quark mass m_q effect on σ_L

- ▶ WW approximation
- Ivanov-Nikolaev UGD employed

[A.D. Bolognino, W. Schäfer, A. Szczurek (in progress)]

• Crucial effect of quark mass m_q in order to catch data

	Theoretical framework	Results	Conclusions and Outlook
		00000000000	
Numerical results			
		_	

ϕ -production - Stability of σ_L on m_q values

[A.D. Bolognino, W. Schäfer, A. Szczurek (in progress)]

Introduction I r	neoretical framework	Results	Conclusions and Outlook
0000 00	000	0000000000	
Numerical results			

ϕ -production - Quark mass m_q effect on σ_T

- ▶ WW approximation
- GBW UGD employed

[A.D. Bolognino, W. Schäfer, A. Szczurek (in progress)]

• Crucial effect of quark mass m_q in order to catch data

	Theoretical framework	Results	Conclusions and Outlook
		0000000000	
Numerical results			

ϕ -production - Quark mass m_q effect on σ_T

- ► WW approximation
- Ivanov-Nikolaev UGD employed

[A.D. Bolognino, W. Schäfer, A. Szczurek (in progress)]

• Crucial effect of quark mass m_q in order to catch data

	Theoretical framework	Results	Conclusions and Outlook
		0000000000	
Numerical results			

ϕ -production - Cross section ratio σ_L/σ_T

► GBW and Ivanov-Nikolaev models compared

[A.D. Bolognino, W. Schäfer, A. Szczurek (in progress)]

	Theoretical framework	Results	Conclusions and Outlook
		00000000000	
Numerical results			

ϕ -production - Total cross section σ_{TOT}

- ► GBW and Ivanov-Nikolaev models compared
- ▶ $\sigma_{TOT} = \sigma_L + \epsilon \sigma_T$, with $\epsilon \approx 1$ in HERA kinematics

	Theoretical framework	Results	Conclusions and Outlook
		00000000000	
Numerical results			

Numerical results

 $\rho\text{-production}$

	Theoretical framework	Results	Conclusions and Outlook
		00000000000	
Numerical results			

ρ -production - Longitudinal cross section σ_L

- ▶ WW approximation
- ► GBW and Ivanov-Nikolaev models compared

	Theoretical framework	Results	Conclusions and Outlook
		00000000000	
Numerical results			

ρ -production - Transverse cross section σ_{T}

- ▶ WW approximation
- ► GBW and Ivanov-Nikolaev models compared

	Theoretical framework	Results	Conclusions and Outlook
		00000000000	
Numerical results			

ρ -production - Total cross section σ_{TOT}

- ► GBW and Ivanov-Nikolaev models compared
- ▶ $\sigma_{TOT} = \sigma_L + \epsilon \sigma_T$, with $\epsilon \approx 1$ in HERA kinematics

	Theoretical framework	Results	Conclusions and Outlook
		0000000000	
Numerical results			

ρ -production - Total cross section σ_{TOT}

- ► GBW and Ivanov-Nikolaev models compared
- ▶ $\sigma_{TOT} = \sigma_L + \epsilon \sigma_T$, with $\epsilon \approx 1$ in HERA kinematics

[A.D. Bolognino, F.G. Celiberto, D.Yu. Ivanov, A. Papa, W. Schäfer, A. Szczurek (in progress)]

	Theoretical framework	Results	Conclusions and Outlook
			00
Conclusions			
Conclus	sions		

Exclusive leptoproduction of polarized light vector mesons to describe cross sections

Exclusive final state + small-x limit $\implies \kappa_{T}$ -factorization allowed

• *t*-dependence of σ parametrized via $b(Q^2)$ -slope:

 \implies Improved predictions for ϕ -production via quark mass $m_q \checkmark$

 \implies Standard GBW model able to catch HERA data in ho-production \checkmark

	Theoretical framework	Results	Conclusions and Outlook
			00
Outlook			
Outlo	ok		

For ρ -production:

- ▶ NLO impact factor in ρ -meson leptoproduction $\implies \Phi^{\gamma^* \rightarrow \rho} = [H_{\text{NLO}}] \circledast [\text{DA}]$
- Test different UGD models $\xrightarrow{in \, order \, to}$ calculate cross section

For ϕ -production:

- Cross section encoded by non-forward helicity amplitude and spin-flip
- ▶ Quark mass m_q in genuine contribution

...And in general

- ▶ UGD extraction from different channels:
 - \diamond small-x gluon TMD \rightarrow BFKL evolution + TMD input

[A.D. Bolognino, F.G. Celiberto, ... (in progress)]

- Consider other processes as testfield for UGD:
 - Heavy quark and heavy-meson production

Thanks for your attention!!

UGD models

Ivanov and Nikolaev' (IN) UGD: a soft-hard model

$$\mathcal{F}(x,\kappa^2) = \mathcal{F}_{\text{soft}}^{(B)}(x,\kappa^2) \frac{\kappa_s^2}{\kappa^2 + \kappa_s^2} + \mathcal{F}_{\text{hard}}(x,\kappa^2) \frac{\kappa^2}{\kappa^2 + \kappa_h^2} \,,$$

The soft term:

$$\diamond \ \mathcal{F}_{\text{soft}}^{(B)}(\mathbf{x}, \kappa^2) = a_{\text{soft}} C_F N_c \frac{\alpha_s(\kappa^2)}{\pi} \left(\frac{\kappa^2}{\kappa^2 + \mu_{\text{soft}}^2}\right)^2 V_N(\kappa)$$

• $\mu^2_{\text{soft}} \longrightarrow \text{soft parameter}$

• $a_{soft} \rightarrow$ weight of soft term compared to the hard one

The hard term:

$$\begin{split} \diamond \quad \mathcal{F}_{\mathsf{hard}}(x,\kappa^2) &= \mathcal{F}_{\mathsf{pt}}^{(B)}(\kappa^2) \frac{\mathcal{F}_{\mathsf{pt}}(x,Q_c^2)}{\mathcal{F}_{\mathsf{pt}}^{(B)}(Q_c^2)} \theta(Q_c^2 - \kappa^2) + \mathcal{F}_{\mathsf{pt}}(x,\kappa^2) \theta(\kappa^2 - Q_c^2) \\ \bullet \quad \mathcal{F}_{\mathsf{pt}}(x,\kappa^2) &= \frac{\partial x g(x,\kappa^2)}{\partial \ln \kappa^2} \\ \bullet \quad \mathcal{F}_{\mathsf{pt}}^{(B)}(x,\kappa^2) &= C_F N_c \frac{\alpha_s(\kappa^2)}{\pi} \left(\frac{\kappa^2}{\kappa^2 + \mu_{\mathsf{pt}}^2}\right)^2 V_N(\kappa) \end{split}$$

The coupling constant:

◊ $α_s ≤ 0.82$ (frozen)

[I. P. Ivanov and N. N. Nikolaev, Phys. Rev. D 65 (2002)]

UGD models

Golec-Biernat-Wüsthoff' (GBW) UGD

$$\mathcal{F}(x,\kappa^{2}) = \kappa^{4}\sigma_{0}\frac{R_{0}^{2}(x)}{2\pi}e^{-\kappa^{2}R_{0}^{2}(x)}$$

 \diamond derives from the effective dipole cross section $\hat{\sigma}(x, r)$ for the scattering of a $q\bar{q}$ pair off a nucleon $\xrightarrow{through}$ a reverse Fourier trasform of

$$\sigma_0\left\{1 - \exp\left(-\frac{r^2}{4R_0^2(x)}\right)\right\} = \int \frac{d^2\kappa}{\kappa^4} \mathcal{F}(x,\kappa^2) \left(1 - \exp(i\vec{\kappa}\cdot\vec{r})\right) \left(1 - \exp(-i\vec{\kappa}\cdot\vec{r})\right)$$

- $\diamond \ R_0^2(x) = \frac{1}{\text{GeV}^2} \left(\frac{x}{x_0}\right)^{\lambda_p}$
- ♦ The normalization σ_0 and the parameters x_0 and $\lambda_p > 0$ of $R_0^2(x)$ have been determined by a global fit to $F_2(x)$:

$$\sigma_0 = 23.03 \,\mathrm{mb}, \qquad \lambda_p = 0.288, \qquad x_0 = 3.04 \cdot 10^{-4}$$

[K.J. Golec-Biernat, M. Wüsthoff, Phys. Rev. D 59 (1998) 014017]

Skewness effects - ϕ -production

Skewness effects on σ_L

 $\sigma_{L} = Rg^{2}(1+\rho^{2})\,\tilde{\sigma}_{L}$

where

•
$$Rg = \frac{2^{2\lambda+3}}{\sqrt{\pi}} \frac{\Gamma(\lambda+5/2)}{\Gamma(\lambda+4)}$$
 with $\lambda = \frac{\delta \log(1/s \Im T_{00})}{\delta \log(1/x)}$
• $\rho = \tan(\frac{\pi\lambda}{2}) = \frac{\Im T_{00}}{\Im T_{00}}$

Skewness effects - ϕ -production

Skewness effects on σ_T

 $\sigma_T = Rg^2(1+\rho^2)\,\tilde{\sigma}_T$

where

• $Rg = \frac{2^{2\lambda+3}}{\sqrt{\pi}} \frac{\Gamma(\lambda+5/2)}{\Gamma(\lambda+4)}$ with $\lambda = \frac{\delta \log(1/s \Im T_{11})}{\delta \log(1/x)}$ • $\rho = \tan(\frac{\pi\lambda}{2}) = \frac{\Im T_{11}}{\Im T_{11}}$