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Part 1
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TMDs and Parton Branching (PB) method



Introduction-TMD
❖ TMDs (Transverse Momentum Dependent parton distributions)

❖ at very small transverse momenta
❖ typically for small     in DY production, or semi-inclusive DIS

❖ at very small x - unintegrated PDFs
❖ essentially only gluon densities (CCFM, BFKL etc)

❖ New approach: Parton Branching method
❖  Cover all transverse momenta from small     to large    as well 

a large range in x and   
❖ provide a novel method to solve evolution equations.
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Parton Branching method: start with DGLAP evolution 
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DGLAP

❖ DGLAP evolution in differential form

 
❖ describes the evolution from the proton to the hard  process.

❖ Sudakov form factor:

 

❖ describes the evolution between two scales.
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Parton Branching method: integral form
❖ DGLAP evolution in differential form

 
❖ Sudakov form factor:

 
❖ introduce Sudakov form factor:

 

❖ Then one obtains its integral form:
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PB: Iterative solution
 

❖ Solve integral equation via iteration:
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TMDs 
❖ TMD parton densities:

❖ Integrate TMD, one can obtain the collinear parton density              

❖  TMD parton densities distributions
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the perturbative evolution kernal K, the non-perturbative starting 
 distribution A0,b(x, k2

t,0, μ2) .

A0,b(x, k2
t,0, μ2) = f0,b(x, μ2

0) ⋅ exp(−k2
t,0/σ2)

the intrinsic kt,0 is a Gauss distribution with σ2 = q2
0 /2, q0 = 0.5 GeV .



 Fit to HERA data
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❖ Fit performed using xFitter ——Sara Taheri Monfared
❖ DIS measurements from HERA I+II
❖ Kinematic range:

❖ Using parametrization of starting distribution as in HERAPDF2.0
❖  

Later, we will talk about two sets of renormalisation scale:
❖ Set1: 
❖ Set2: 

3.5 < Q2 < 50000 GeV2, 4 × 10−5 < x < 0.65

αs(μ2
i )

αs(q2
t,i), with q2

t,i = (1 − zi)2μ2
i
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Application in Drell-Yan (DY) production



❖ NLO calculations of DY production
❖ Madgraph5_aMC@NLO (MC@NLO) for the 

hard process 
❖ PB-TMDs add kT, modify the kinematics of the 

initial state partons
❖  the invariant mass and the rapidity of the 

partonic system are conserved.
           —> x is changed accordingly 

Application to DY
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TMD distributions

experimental and 
model uncertainties

Intrinsic kt (Gauss) 
uncertainties
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❖ TMD distributions and its uncertainties 
❖ experimental and model uncertainties obtained from fit, small
❖ uncertainties from intrinsic kt: change the width of the Gauss distribution      

by a factor of 2 up and down in the fit, sizable. 
q2

0

A0,b(x, k2
t,0, μ2) = f0,b(x, μ2

0) ⋅ exp(−2 ⋅ k2
t,0 /q2

0)



Matching to hard process: MC@NLO
❖ MC@NLO: soft and collinear parts from NLO are subtracted, that can be 

added back by TMD or parton shower later.
❖ the subtraction terms of Herwig is used. 
❖ two choices, Herwig 6 and Herwig ++ , have been compared.

❖ Low qT region affected
❖ Some differences between 

      two choices.
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This is not physical.



Matching to hard process: MC@NLO
❖ MC@NLO subtracts soft and collinear parts from NLO with Herwig.  
❖ apply PB TMD to add the soft and collinear parts back.
 

❖ low qT region affected
         —>filled by TMD

❖ no sensitivity to the subtraction 
        terms is observed. 
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❖ Z-boson production at 8 TeV ATLAS is compared with prediction  
MC@NLO with PB-TMD.    

❖ Predictions using PB-2018-Set1(        ) 
and Set2 (                    ) parton 
distributions:
❖ Set1 overshoots the measurements  at 

small qT.
❖ Set2 agrees well with measurement. 

❖ The deviation at higher qT comes 
from missing higher order 
contributions in the matrix element 
calculation.
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ATLAS (2016). DY at 8 TeV, EPJC 76, 291, 1512.02192

αs(q)
αs(q(1 − z))

Z-boson production at 8TeV



Z-boson production at 8TeV
❖ Z-boson production at 8 TeV ATLAS is compared with prediction  

MC@NLO with PB-TMD.    
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ATLAS (2016). DY at 8 TeV, EPJC 76, 291, 1512.02192

❖ Predictions using PB-2018-Set1(        ) 
and Set2 (                    ) parton 
distributions.

❖ Varying the mean of intrinsic kt 
distribution by factor 2, small

αs(q)
αs(q(1 − z))



Z-boson production at 8 TeV

❖ TMD fills low qT part
❖ TMD uncertainties is small. 
❖ scale uncertainties dominate, but 

small. 

❖ DY+1 jet plays an important role 
and improves the description of the 
measurements at larger qT.

More details about merging DY and 
DY+1 jet calculation will be presented 
by  A. Bermudez Martinez 
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ATLAS (2016). DY at 8 TeV, EPJC 76, 291, 1512.02192

❖ Z-boson production at 8 TeV ATLAS is compared with prediction  
MC@NLO with PB-TMD.    



Z-boson production at 13 TeV

❖ The prediction agrees well with the 
measurement in the low pT region, 

❖ but deviates at high pT because of 
missing Z+jets matrix element 
calculation.

❖ The dominate theory uncertainties 
are from scale of MC@NLO matrix 
element. 
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CMS (2016). DY at 13 TeV, submitted, 1909.04133

❖ Z-boson production at 13 TeV CMS is compared with prediction  
MC@NLO with PB-TMD.    



Z-boson production at 13 TeV
❖ Z-boson production at 13 TeV CMS is compared with predictions  MC@NLO 

with PB-TMD. 
          aMC@NLO, POWHEG, MINLO                     PB-TMD,  Resbos, Geneva .    
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❖  

❖ The PB TMD prediction describes data well at low pT.



Conclusion
❖ Parton Branching method can be used to solve DGLAP equation.
❖ PB TMD fit with HERA data, and works out very nice when applied to pp 

collision.  
❖ Application to pp processes, DY: 

❖ DY qT-spectrum
❖ NLO TMD with MC@NLO works well for both 8 and 13 TeV.
❖ The dominant uncertainties are scale uncertainties, but quite small.

Prospects:
❖ PB TMD application in multijets/ HF jets productions.
❖ Parton shower based on PB TMD.
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Backup
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Thank you for your attention!



TMDs
❖ TMDs extend collinear PDFs by taking into account the transverse 

momentum of the parton:

In the context of PB method, we adopt the simplified form of starting 
distribution:
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f(x, μ2) = ∫
d2kt

2π
𝒜(x, kt, μ2)

𝒜0(x, kt, μ2) = f0(x, μ2) ⋅ exp(−k2
t /σ2)

Collinear PDF Intrinsic kt



TMDs & Fit to HERA data
❖ The starting distribution:
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A0,b(x, k2
t,0, μ2) = f0,b(x, μ2

0) ⋅ exp(−k2
t,0/σ2)

the intrinsic kt,0 is a Gauss distribution with σ2 = q2
0 /2, q0 = 0.5 GeV .

❖ Fit performed using xFitter ——Sara Taheri Monfared
❖ DIS measurements from HERA I+II
❖ Kinematic range:

❖ Using starting distribution as in HERAPDF2.0

Later, we will talk about two sets of renormalisation scale:
❖ Set1: 
❖ Set2: 

3.5 < Q2 < 50000 GeV2, 4 × 10−5 < x < 0.65

αs(μ2
i )

αs((1 − zi)2μ2
i )

[1]. F. Hautmann, H. Jung, A. Lelek, V. Radescu, and R. Zlebcik. “Soft-gluon resolution scale in QCD evolution equations”. Phys. Lett., 
B772:446451, 2017. 
[2]. F. Hautmann, H. Jung, A. Lelek, V. Radescu, and R. Zlebcik. “Collinear and TMD Quark and Gluon Densities from Parton Branching 
Solution of QCD Evolution Equations”.  JHEP, 01:070, 2018.
[3].A. Bermudez Martinez, P. Connor, F. Hautmann, H. Jung, A. Lelek, V. Radescu, and R. Zlebcik. “Collinear and TMD parton densities 
determined from fts to HERA DIS measurements”, DESY-18-042



Matching to hard process: MC@NLO
❖ MC@NLO:  subtracts soft and collinear parts from NLO
❖  (added back by TMD and parton shower)

❖ Since the PB-method  allows angular ordering, the hard process with 
the subtraction terms of Herwig is used.

❖ Herwig 6 and Herwig ++ 

!24

This is not physical.



Z-boson production at 8 TeV
❖ Z-boson production at 8 TeV ATLAS is compared with prediction  

MC@NLO with PB-TMD.    

❖ The       distribution are compared also. 
❖

ϕ *
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Introduction-TMD
❖ Transverse momentum effects are naturally coming from intrinsic      

and parton showers.

❖ Now approach: Parton branching method
❖ determine integrated PDF from parton branching solution of 

evolution eq. 
❖ Check consistency with standard evolution on integrated PDFs at 

LO, NLO and NLO. 

❖ determine TMD:
❖ Since each branching is generated explicitly, energy-momentum 

conservation is fulfilled and transverse momentum distributions 
can be obtained. 

kt
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Z-boson production at 13 TeV
❖ Z-boson production at 13 TeV CMS.    
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CMS (2016). DY at 13 TeV, submitted, 1909.04133



Z-boson production at 13 TeV
❖ Z-boson production at 13 TeV CMS is compared with prediction  

MC@NLO with PB-TMD.    
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❖ Uncertainties in PB method 
mainly from scale of MC@NLO 
matrix element. 


