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Figure 3. Graphical representation of the amplitude at NLL accuracy, as obtained through BFKL
evolution. The addition of one rung corresponds to applying once the leading-order BFKL evolution
on the wavefunction of order (` � 2). This gives the wavefunction at order (` � 1), according to
eq. (2.17). Closing the ladder and integrating over the resulting loop momentum gives the reduced
amplitude, according to eq. (2.11).

2.2 Evolution of the wavefunction

Eq. (2.11) shows that the `-th order amplitude is obtained in terms of iterated integrals that
arise upon evaluating the wavefunction ⌦(`�1)(p, k) to order (` � 1). It is straightforward
to compute the first few orders which gives us an opportunity to revisit the findings of
ref. [23]. We will be able to explain why a new colour structure emerges for the first time
at four loops and explore the general structure of the relevant iterated integrals.

A useful fact is that the evolution admits one well-known solution in the case where
the exchanged state is colour-adjoint and ⌦(p, k) is constant (i.e. independent of k) [1, 2].
The adjoint exchange gives a signature-even state with the same leading-order trajectory
as the reggeised gluon. This enables one to rewrite the Hamiltonian (2.14) as a part which
vanishes when ⌦(p, k) is constant, plus a part proportional to (CA �T2

t ):

⌦(`�1)(p, k) = Ĥ⌦(`�2)(p, k) Ĥ = (2CA �T2
t )Ĥi + (CA �T2

t )Ĥm (2.17)

where, explicitly,

Ĥi (p, k) =

Z
[Dk0]f(p, k, k0)

⇥
 (p, k0)� (p, k)

⇤
(2.18)

Ĥm (p, k) = J(p, k) (p, k) (2.19)

and the function J(p, k) is defined by

J(p, k) =
1

2✏
+

Z
[Dk0]f(p, k, k0) (2.20)

=
1

2✏


2�

✓
p2

k2

◆✏

�

✓
p2

(p� k)2

◆✏�
(2.21)
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