Parton shower based on TMD parton distributions

Melanie Viola Schmitz ¹, Francesco Hautmann ^{2,3}, Hannes Jung ¹, Sara Taheri Monfared ¹

¹Deutsches Elektronen-Synchrotron (DESY) ²University of Antwerp ³University of Oxford

Workshop on Resummation, Evolution & Factorization Pavia, 25-29 November, 2019

Outline

1 TMDs from Standard Parton Showers

- Parton shower evolution
- The PS2TMD method
- Effective TMDs from standard parton showers

Parton shower based on TMDs

- The TMD parton shower
- A method to validate a TMD parton shower
- Consistency checks using PB-TMDs
- TMDs from the TMD parton shower

Summary & Outlook

TMDs from Standard Parton Showers

- Parton shower evolution
- The PS2TMD method
- Effective TMDs from the PYTHIA8 and HERWIG6 parton showers

"TMD parton distributions from parton showers" arXiv:1907.09441 (2019)

Parton shower evolution - Backward evolution

Short overview of the backward evolution type for initial state showers:

- initial state ratiation is generated by going backwards from hard process towards beam particles
- Sudakov form factor Δ_b is defined that gives the probability for a parton b to remain at momentum fraction x from the scale t_{max} to t < t_{max},

$$\Delta_{b}(x, t_{max}, t) = \exp\left\{-\int_{t}^{t_{max}} \mathrm{d}t' \frac{\alpha_{s}(t')}{2\pi} \sum_{a} \int \mathrm{d}z P_{a \to bc}(z) \frac{x' f_{a}(x', t')}{x f_{b}(x, t')}\right\}$$

Parton shower evolution - Backward evolution

Short overview of the backward evolution type for initial state showers:

- initial state ratiation is generated by going backwards from hard process towards beam particles
- Sudakov form factor Δ_b is defined that gives the probability for a parton b to remain at momentum fraction x from the scale t_{max} to t < t_{max},

$$\Delta_{b}(x, t_{max}, t) = \exp\left\{-\int_{t}^{t_{max}} \mathrm{d}t' \frac{\alpha_{s}(t')}{2\pi} \sum_{a} \int \mathrm{d}z P_{a \to bc}(z) \frac{x' f_{a}(x', t')}{x f_{b}(x, t')}\right\}$$

• evolution scale
$$\mu$$
 ($t = \mu^2$) is selected from hard scattering process

$$\rightarrow$$
 next scale μ_{i-1} at which a resolvable
branching occurs is chosen by
Sudakov form factor

- *z*_{i-1} is generated according to splitting function and *x*_{i-1} = ^{*x*_i}/_{*z*_{i-1}} is calculated from it
- iterate procedure until cut-off scale q₀

The PS2TMD method - The idea

What is the aim of this parton shower study?

- \rightarrow To compare different parton showers in a simple way by determining effective TMDs from them.
- \rightarrow effective TMDs can be calculated from the cumulative effect of the parton shower

How can this be done?

- \rightarrow define variable that can be calculated by every parton shower and can be defined generally but which is not dependent on a concrete observable
- \rightarrow method will enable determination of parton distributions as a function of x, μ^2 and k_{\perp}^2

Parton distributions can be obtained from a **physical process** - BUT it has kinematic limits, cross section & phase space \rightarrow **that complicates calculations**

How to do the parton shower study technically?

A = A = A = E

The PS2TMD method - Technical features

Define a **toy process that simplifies calculations** of the quantities that are needed for the TMD parton densities.

- $\rightarrow k_1$ has fixed momentum fraction x_1 close to 1 and no transverse momentum to simplify calculations
- \rightarrow k_2 is subject to parton shower & x_2 is determined according to collinear parton distribution
- \rightarrow Transverse momentum of k_2 is investigated, $\vec{k}_{\perp 2}=\vec{q}_{\perp}-\vec{k}_{\perp 1}$

E SQA

The PS2TMD method - Technical features

Define a **toy process that simplifies calculations** of the quantities that are needed for the TMD parton densities.

- \rightarrow k_1 has fixed momentum fraction x_1 close to 1 and no transverse momentum to simplify calculations
- \rightarrow k_2 is subject to parton shower & x_2 is determined according to collinear parton distribution
- \rightarrow Transverse momentum of k_2 is investigated, $\vec{k}_{\perp 2}=\vec{q}_{\perp}-\vec{k}_{\perp 1}$

 \rightarrow method is applied to standard parton showers, using a PDF set that has been obtained within the parton branching method, PB-Set2

Melanie Schmitz (DESY)

ELE DOG

TMDs from the $\ensuremath{\operatorname{PYTHIA8}}$ parton shower

 \rightarrow differences to PB-TMD observed since P8 PS uses p_T-ordering

ightarrow effective TMDs can be determined from standard parton shower

Melanie Schmitz (DESY)

Parton shower based on TMDs

TMDs from the $\operatorname{HERWIG6}$ parton shower

 \rightarrow distributions are similar to PB-TMD since both apply angular ordering

 \rightarrow effective TMDs can be determined from any parton shower

Melanie Schmitz (DESY)

Parton shower based on TMDs

Parton shower based on TMDs

- The TMD parton shower
- A method to validate a TMD parton shower
- Consistency checks using PB-TMDs
- TMDs from the TMD parton shower

"TMD parton distributions from parton showers" arXiv:1907.09441 (2019)

TMD parton shower - Evolution

What is different to the evolution of a collinear parton shower?

- TMD fixes the transverse momentum of the initial state partons
 → transverse momenta during backward evolution follow behaviour of TMD
- Sudakov form factor making use of TMD parton densities $A_a(x', k'_t, \mu')$,

$$\Delta_{\mathcal{S}}(x,\mu_{i},\mu_{i-1}) = \exp\left[-\int_{\mu_{i-1}}^{\mu_{i}} \frac{\mathrm{d}\mu'}{\mu'} \frac{\alpha_{s}\left(\tilde{\mu}'\right)}{2\pi} \sum_{a} \int \mathrm{d}z P_{a \to bc}(z) \frac{x'\mathcal{A}_{a}\left(x',k'_{t},\mu'\right)}{x\mathcal{A}_{b}\left(x,k_{t},\mu'\right)}\right]$$

ELE DOG

TMD parton shower - Evolution

What is different to the evolution of a collinear parton shower?

- TMD fixes the transverse momentum of the initial state partons
 → transverse momenta during backward evolution follow behaviour of TMD
- Sudakov form factor making use of TMD parton densities $A_a(x', k'_t, \mu')$,

$$\Delta_{\mathcal{S}}(x,\mu_{i},\mu_{i-1}) = \exp\left[-\int_{\mu_{i-1}}^{\mu_{i}} \frac{\mathrm{d}\mu'}{\mu'} \frac{\alpha_{s}\left(\tilde{\mu}'\right)}{2\pi} \sum_{a} \int \mathrm{d}z P_{a \to bc}(z) \frac{x' \mathcal{A}_{a}\left(x',k_{t}',\mu'\right)}{x \mathcal{A}_{b}\left(x,k_{t},\mu'\right)}\right]$$

How to calculate the transverse momenta?

 k_t is calculated from transverse momentum of emitted parton q_t and transverse momentum of previous propagating parton,

$$\mathbf{k}_{ti-1} = \mathbf{k}_{ti} + \mathbf{q}_{ti-1}$$

= 900

The TMD parton shower & its applications

What is the purpose of a TMD parton shower?

It is constructed in a way that it should follow the parton evolution of the TMDs

 \rightarrow no change of the kinematics of the matrix element process

How can it be applied?

 \rightarrow Example: $\Delta\Phi$ distribution for NLO dijets

 \rightarrow PB-TMDs combined with POWHEG give very good description of data

A method to validate a TMD parton shower

How can the TMD parton shower be validated?

- \rightarrow TMD parton shower evolution is reverse of the Parton Branching evolution
- \rightarrow This can be used for a detailed investigation of the shower since the kinematics can be calculated at every step!

12/17

A method to validate a TMD parton shower

How can the TMD parton shower be validated?

- \rightarrow TMD parton shower evolution is reverse of the Parton Branching evolution
- \rightarrow This can be used for a detailed investigation of the shower since the kinematics can be calculated at every step!

Start at the hard process, go down to smaller scales & determine TMD at different steps -TMD can be compared to PB-Set1 & PB-Set2 that are used for the initial state partons

 \rightarrow First step: Apply PS2TMD method to TMD parton shower

Consistency checks using PB-TMDs

But first of all, the PS2TMD method needs to be validated with PB-TMDs:

- ightarrow apply the method to PB-TMDs that are used to generate a k_{\perp} (PB-Set1 & PB-Set2)
- ightarrow check if the method is able to reconstruct the TMDs that are used to generate the k_\perp
- \rightarrow compare results from PS2TMD method to PB-TMD distributions

= 900

Consistency checks using PB-TMDs

But first of all, the PS2TMD method needs to be validated with PB-TMDs:

- \rightarrow apply the method to PB-TMDs that are used to generate a k_{\perp} (PB-Set1 & PB-Set2)
- ightarrow check if the method is able to reconstruct the TMDs that are used to generate the k_\perp
- \rightarrow compare results from PS2TMD method to PB-TMD distributions

TMDs from the TMD parton shower

Melanie Schmitz (DESY)

Parton shower based on TMDs

REF Workshop 2019, Pavia

14 / 17

The effect of the TMD parton shower

What is exactly the effect of the TMD parton shower?

 \rightarrow Take again look at NLO dijet $\Delta\Phi$ distribution:

 \rightarrow in region of small $\Delta\Phi$ there is a contribution from the shower \rightarrow with TMD parton shower measurement is better described

Melanie Schmitz (DESY)

Parton shower based on TMDs

REF Workshop 2019, Pavia

15 / 17

 method described to determine TMDs from standard parton showers (PS2TMD)

-

- method described to determine TMDs from standard parton showers (PS2TMD)
- PS2TMD method applied to parton showers
 - \rightarrow $_{\rm PYTHIA8:}$ differences in TMD distributions to PB observed
 - \rightarrow HERWIG6: TMD distributions similar to PB
 - \rightarrow choice of ordering variable has large effect on TMD distribution

- method described to determine TMDs from standard parton showers (PS2TMD)
- PS2TMD method applied to parton showers
 - \rightarrow $_{\rm PYTHIA8:}$ differences in TMD distributions to PB observed
 - \rightarrow HERWIG6: TMD distributions similar to PB
 - \rightarrow choice of ordering variable has large effect on TMD distribution
- method described to validate a TMD parton shower
 - \rightarrow concept of PS2TMD proven using PB-TMDs
 - \rightarrow TMDs from TMD parton shower show advantage of using TMDs: no change of kinematics
 - \rightarrow for first time, consistent use of a TMD parton shower with TMD distributions is shown
 - \rightarrow with TMD parton shower measurements can be better described

5 5 9 Q Q

- method described to determine TMDs from standard parton showers (PS2TMD)
- PS2TMD method applied to parton showers
 - \rightarrow $\rm PYTHIA8:$ differences in TMD distributions to PB observed
 - \rightarrow $\rm HERWIG6:\ TMD$ distributions similar to PB
 - \rightarrow choice of ordering variable has large effect on TMD distribution
- method described to validate a TMD parton shower
 - \rightarrow concept of PS2TMD proven using PB-TMDs
 - \rightarrow TMDs from TMD parton shower show advantage of using TMDs: no change of kinematics
 - \rightarrow for first time, consistent use of a TMD parton shower with TMD distributions is shown
 - \rightarrow with TMD parton shower measurements can be better described

Thank you for your attention

Melanie Schmitz (DESY)

= nan

16 / 17

BACKUP

TMD distributions for p_T - & angular ordering

Validation PS2TMD - Check 1

(日) (日) (日) (日) (日) (日) (日) (日)

Comparison of PB-Set1 and PB-Set2

