

First thoughts on two and three photon signals

Federica Giacchino, Federica Oliva, Gabriele Piperno

PADME General Meeting - 9 gennaio 2019

Starting point: Barbara's slide

From 19/12/2018 analysis meeting

A signal (SM or not)

- available MC data? Enough statistics?

- sensitivity; sensitivity as a function of background level

Foreseen background channels

- list

- theoretical quantitative estimate

- available MC data for each channel? Enough statistics?

Basic selection of the signal and background(s)

- ideal selection i.e. list of variables and cuts

- already tested/built on MC data?

- rough evaluation of selection efficiency on MC

- are these variable already available on reconstructed data?

Limiting factors / needed figures of merit:

- calibrations: energy? time? position? for one detector in particular?

- resolution: energy? time? position?
- MC statistics?

First considerations

These interactions can be considered both as a background to the Dark Sector physics and as interesting physics channels themselves. Up to now the $\gamma\gamma(\gamma)$ have been seen mainly from the background point of view.

A MC already exists, but it is based on the initial PADME design:

POT: 5000 >20000(?)

bunch duration: 40 ns — 200 ns (is it possible to implement the real shape?)

- design detector geometry ——— final detector geometry

Angular spread simulated as 1% energy spread, is this realistic?

Magnetic field? It also changed during data acquisition

The current MC can anyhow help us to understand the needed number of POT to have a sufficient statistics, but backgrounds can be different and in particular ECal time resolution is a major point (probably more than energy resolution).

No one of us three knows how to run the MC, Geant4 and where the code is

Main backgrounds to A' search

Main backgrounds:

- $e^+ e^- \rightarrow \gamma \gamma (\gamma)$
- $e^+ N \rightarrow e^+ N \gamma$
- pile-up

Cuts:

- 1 cluster in ECAL fiducial volume
- no particles in vetoes
- no γ in SAC w/ $E_{\gamma} > 50$ MeV
- 20-150 MeV < E_{γ} < 120-350 MeV (depending on $m_{A'}$)

Backgrounds geometry

Annihilation (+ISR): $e^+ e^- \rightarrow \gamma \gamma (\gamma)$

Bremsstrahlung: $e^+ N \rightarrow e^+ N \gamma$

$\gamma \gamma$ channel

ECAL can (virtually) remove the 2 γ s background

$\gamma \gamma \gamma \gamma$ channel

ECAL+SAC can (virtually) remove the 3 ys background

$\gamma \; \gamma \; (\gamma)$ origin and reduction

Possible $\gamma \gamma (\gamma)$ background origins:

- clustering and level 0 trigger algorithms inefficiencies
- two photons overlap
- large angle scattering
- \bullet one or two γs considered as belonging to another event
- geometrical lost in ECal crack
- $\gamma \gamma (\gamma)$ backgrounds reduction depends on:
- cluster definition
- cuts on event topology
- ECal acceptance (needed absolute ECal positioning)
- veto time interval choice

$\gamma \gamma (\gamma)$ backgrounds, fundamental points

Fundamental points to study $\gamma \gamma (\gamma)$ backgrounds:

- implement experiment final geometry in simulations
- implement in $\gamma~\gamma~(\gamma)$ MC angular correlation w/
 - primary e⁺ direction
 - beam spot dimensions
- cluster definition and γ separation efficiency as a function of
 - energy threshold
 - minimum energy to define a cluster
 - interval to define a "good" γ
 - variables intervals for each m_{A'} (each def. takes different background components)
- SAC veto interval (balancing between acceptance and inefficiency)

e⁺ e⁻ $\rightarrow \gamma \gamma$ cross section measurement at low energy

GEANT4 never tested at so low energies

