Toy MC descriptyion and comparison with LNS data

Toy MC

Toy MC inputs: differential cross sections

Total Elastic (blue) and inelastic (red) $n+A r$ cross section.

Differential Elastic $\mathrm{n}+$ Ar cross section.

Toy MC: flow chart

- Choose randomly (position, direction) of ${ }^{7} \mathrm{Li}$ ions in Beam Collimator entrance; uniform in r^{2} and $\cos \theta$ (with cut-off at beam divergence)
- Propagate ${ }^{7} \mathrm{Li}$ ions and decide if it hits the CH_{2} target.
- Sample the ${ }^{7} \mathrm{Be}$ differential cross section and generate ${ }^{7} \mathrm{Be}$ direction and energy.
- Propagate ${ }^{7} \mathrm{Be}$ and decide if it hits the collimator centered at $\left(\Theta_{\text {sitel },} \Phi_{\text {sitel }}\right)$.
- If so, generate the corresponding neutron.
- Propagate neutrons:
- 3D Intersection with Cryostat and TPC: pathlength in LAr.
- Neutron interaction in LAr using interaction lengths for elastic and inelastic scattering.
- Deflect neutron : using differential cross sections.
- Propagate scattered and un-scattered neutrons to the Wheel plane.
- Calculate fraction of neutrons intersecting TPC (geom. eff.), interacting inside and within the relevant recoil energy range.
- Calculate the ${ }^{7} B e$ rate per nA using MC.

Toy MC: changes in the ${ }^{7} \mathrm{Be}$ spectrum with beam parameters

Beam energy

Beam divergence

$\Theta_{\text {Sitel }}$

The spectrum not sensitive to $\Phi_{\text {Sitel }}$

Toy MC: ${ }^{7 B e}$ rate

Table 1: The rate of the ${ }^{7} \mathrm{Be}$ events in the low energy peak as measured in the september shift and predicted by MC.

	Run 645 (Data/MC)	Run 715 (Data/MC)
Rate $[\mathrm{Hz} / \mathrm{Hz}$		
Rate $[\mathrm{Hz} / \mathrm{nA}]$	$17.21 /-$	$10.41 /-$
	$4.9 / 5.1$	$3.0 / 3.6$

Toy MC: example of neutron propagation

$\mathrm{E}_{\mathrm{Li}}=28 \mathrm{MeV}$
Low/High ${ }^{7}$ Be blobs
$\Theta_{\text {Sitel }}=5.15^{\circ}$

Toy MC: neutron beam at the TPC plane


```
E
Low '`Be blob
\Theta SiTel }=5.1\mp@subsup{5}{}{\circ
```

60-80\% geometrical interception depending on beam divergence.

Toy MC: neutron beam at the Wheel plane

Without TPC

With TPC

Beam Divergence
0.2^{0}

LNS September data: SiTel position calibration

Solid markers : normal collimator
Empty markers: inverted collimator
Optimum value $\Theta_{\text {sitel }}=5$ [deg] (inverted)

Sctan in $\Phi_{\text {sitel }}$: each line corresponds to a fixed value of $\Theta_{\text {sitel }}$

Scan in Energy: red (blue) is inverted (nominal) collimator, $\Phi_{\text {sitel }}$ is -1.1 mm .

$$
\Phi_{\text {SiTel }}=-0.5 \mathrm{~mm}
$$

PMTO horizontal scan close to Scattering Chamber

Overall good agreement but difficult to derive conclusions due to uncertainties in PMTO placement at the level of 2 cm .

25\% LSCi neutron efficiency assumed.

PMT0 vertical scan at the Wheel

- There is a 5 cm displacement between data and prediction from MC (which uses $\boldsymbol{\Phi}_{\text {sitel }}$ from TPC vertical scan): it indicates relative missalignment of PMTO and TPC
- PMT0 efficiency in the plot has been renormalized by a 2.5 factor, i.e. LSCi efficiency 10\%.

PMTO horizontal scan at the Wheel

Overall good agreement with previous scan but difficult to derive conclusions due to uncertainties in bar placement at the level of 2 cm .

Conclusions

- We presented a procedure to calibrate $\theta_{\text {SiTel }}$ and $\phi_{S i T e l}$ based on the Be band spectrum and a TPC vertical scan. The results can be strengthed if the XY position of the recoils in the TPC is used.
- Neutron beam shape can reduce the TPC coincidence rate by at most a factor of 2 .
- Horizontal (vertical) neutron beam displacement w.r.t to the TPC center is $0.8(2.2) \mathrm{cm}$ for the inverted collimator.
- It is plausible that there is relative missalignment between TPC and LSCi wheel of $\sim 5 \mathrm{~cm}$.
- Either the Toy MC is substantially wrong or the LSci neutron detection efficiency is lower than expected.

Future work

- Neutron detection efficiency of LSci.
- Implement in the ToyMC the other LSci and check if the efficiency is consistent.

