TPC performance I: SER, S1, LY (Facts and Opinions)

Nicola Rossi

ReD - Face to face meeting
19-29 Dec 2018

Reconstruction Chain

SER Charge and aplitude

Charge spectrum

- DAQ window (20 us)
- pretrigger ~4us
- integration ~
- comb of independent Gaussian fit

S/N >~ 5
Mu/Sigma >~ 1/6

Amplitude Spectrum
\rightarrow Matched filter
\rightarrow Vlad

Vinogrado's Anlysis

$$
\begin{gathered}
K_{d u p}=\frac{p}{1-p} \\
E[X]=L\left(1+K_{d u p}\right) \\
\operatorname{Var}[X]=L\left(1+K_{d u p}\right)\left(1+2 K_{d u p}\right)=F E[x]
\end{gathered}
$$

$f_{k}=\frac{\text { § } G(k)}{\text { Total }}$

Likelihood fit to the Vinogradov's Model
$\rightarrow \mathrm{L}, \mathrm{p}$
$\mathrm{K}_{\text {dup }}=$ average PE per real PE
Here $\mathrm{K}_{\text {dup }}$ is an effective parameters that accounts for:

- cross-talks
- delayed cross talk
- after-pulses
... in the 4 us integration window because we are doing a "charge" analysis

LY and top/bottom asymmetry (${ }^{241} \mathrm{Am}$)

DEFINITIONS

Gross LY $=\mathrm{Mu} / \mathrm{E}_{\mathrm{am}}$
Net LT $=\mathrm{Mu} /\left(\mathrm{E}_{\mathrm{am}}\left(1+\mathrm{K}_{\text {dup }}\right)\right)$
Simple resolution Model

$$
\begin{aligned}
& \sigma(\mathrm{PE})^{2}= \\
& \mathrm{PE} \times \mathrm{LY}\left(1+\mathrm{K}_{\text {dup }}\right)\left(1+2 \mathrm{~K}_{\text {dup }}\right) \times \\
& \left(1+\mathrm{r}_{\text {SPE }_{2}^{2}}\right)+ \\
& \sigma_{\text {baseline }}^{2}
\end{aligned}
$$

Top/Bottom Analysis vs OV

		Am 241 source runs with different OV				!							
			Likelihood										
TOTAL	VOV (+)	mu	sigma	Kdup (SER)	LY gross	LY net		Resolution	Fano		Expected Fano	Fano Ratio	p Vinog.
779	5,00	505,75	37,93	0,19	8,50		7,14	7,50		2,90	1,38	2,10	0,16
782	6,00	559,30	40,83	0,27	9,40		7,40	7,30		3,10	1,54	2,01	0,21
785	7,00	672,35	49,75	0,40	11,30		8,07	7,40		3,70	1,80	2,06	0,29
789	8,00	773,50	56,47	0,55	13,00		8,39	7,30		4,20	2,10	2,00	0,35
	VOV (+)	mu	sigma	Kdup (SER)	LY gross	LY net		Resolution	Fano		Expected Fano	Fano Ratio	p Vinog.
TOP	5,00	254,10	26,90	0,19	4,27		3,59	0,11		2,85	1,38	2,06	0,16
	6,00	292,7	30,30	0,26	4,92		3,90	0,10		3,14	1,52	2,06	0,21
	7,00	337,80	34,20	0,43	5,68		3,97	0,10		3,46	1,86	1,86	0,30
	8,00	390,9	39,50	0,48	6,57		4,44	0,10		3,99	1,96	2,04	0,32
BOTTOM	5,00	244,20	43,10	0,19	4,10		3,45	0,18		7,61	1,38	5,51	0,16
	6,00	280,40	51,20	0,27	4,71		3,71	0,18		9,35	1,54	6,07	0,21
	7,00	322,40	59,00	0,36	5,42		3,98	0,18		10,80	1,72	6,28	0,26
	8,00	369,80	68,70	0,58	6,22		3,93	0,19		12,76	2,16	5,91	0,37

$\mathrm{K}_{\text {dup }}$ is the average of bot and top channels
Discrepancy between Fano Expected and Deduced by Laser runs:

- TOP: factor x2
- BOTTOM: factor x6

Resolution changed
From 11\% (Catania) to 7.5\% (Naples)

About the baseline noise

Average WF top/bottom

An example: wf from run $785\left({ }^{241} \mathrm{Am}\right)$
Average of 10.000 Wfs Around the Am241 peak from run 785

Average WF top/bottom

An example: wf from run $785\left({ }^{241} \mathrm{Am}\right)$
Average of 10.000 Wfs Around the Am241 peak from run 785

Possible issue

- Noise?
- SPE resolution?
- Optical cross talk

- Positive correlations among channels?
- TPB and Geometry? (\rightarrow Maximo) (source position, I_bias)
- Non linear dependency of $\mathrm{K}_{\text {dup }}$ upon the total light

!!! BUG IN THE RECONSTRUCTION CODE !!!

Quenching VS $E_{\text {drift }}$

fdoke_vs_field

