Dark Matter Detection INDIRECT [and DIRECT]

Paolo Lipari LC09 workshop Perugia 24th september 2009 It exists (no modified gravity for the bullet cluster!)

Good estimate of the cosmological average (22%)

Most of it is non baryonic

Most of it is "cold"

It cannot be explained by the Standard Model in Particle Physics

PHYSICS beyond the STANDARD MODEL is **REQUIRED** to explain Dark Matter !!

Extension of the Standard Model are EXPECTED at the electroweak mass scale

These extensions can "naturally" result in the existence of Dark Matter !

Are LHC/ILC and DARK Matter searches studying the same Physics ?

Are LHC/ILC and DARK Matter searches studying the same Physics ?

This is certainly possibles ! [... but not necessary ...]

The physics may or may not be related

Lines of investigations that are independent and complementary

Problems with a different status: DM problem : direct observational puzzle. New physics at EW scale : theoretically motivated prediction ...there is a lot we do not know about DM....

Possible theoretical ideas:

```
THERMAL RELIC (WIMP + variants)
```

AXION (phase space condensate)

SUPERMASSIVE particles ...

...there is a lot we do not know about DM....

Possible theoretical ideas:

THERMAL RELIC (WIMP + variants)

AXION (phase space condensate)

SUPERMASSIVE particles ...

The "WIMP miracle"

Relic density

$$\Omega_\chi \propto rac{1}{\langle \sigma \; v
angle}$$

$$\sigma v
angle_{T_F} \simeq 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$$
 $\sigma \sim \frac{\alpha^2}{M^2} \qquad \qquad M \sim 100 \text{ GeV}$
Electroweak scale !

...there is a lot we do not know about DM....

Possible theoretical ideas:

THERMAL RELIC (WIMP + variants)

AXION (phase space condensate)

SUPERMASSIVE particles ...

Evidence of DM at different Length scales Cosmological Very Large Scale Clusters of Galaxies

Astrophysical information

Dark Matter in the Milky Way

 $\rho_{\rm dm}(\vec{x})$

Dark Matter density distribution

 $f_{\rm dm}(\vec{v}, \vec{x})$

Velocity distribution

[consistency requirement]

Astrophysical information

Dark Matter in the Milky Way

$$ho_{\rm dm}(\vec{x})$$

Dark Matter density distribution

 $f_{\rm dm}(\vec{v}, \vec{x})$

Velocity distribution

[consistency requirement]

Problems:

"The CUSP"

"Granularity" ["the BOOST factor"]

(constant)
(1/r divergence)
(stronger divergence)

Shape of the "CUSP"

Numerical Simulations of Structure Formations

500 Mpc/h

Mon. Not. R. Astron. Soc. 391, 1685-1711 (2008)

doi:10.1111/j.1365-2966.20

The Aquarius Project: the subhaloes of galactic haloes

V. Springel,^{1*} J. Wang,¹ M. Vogelsberger,¹ A. Ludlow,² A. Jenkins,³ A. Helmi,⁴ J. F. Navarro,^{2,5} C. S. Frenk³ and S. D. M. White¹

Significant Structure in DM

"Boost factor"

Power injection for Dark Matter annihilation $L(\vec{x}) = \frac{\rho(\vec{x})^2}{M_{\gamma}^2} \langle \sigma v \rangle M_{\chi}$

 $\chi + \chi \to \gamma \quad e^+$ ν_{α} \overline{p}

Power injection from DM annihilation

Power injection from DM annihilation

$$L_{\rm Galaxy}^{\rm DM} \simeq 4 \times 10^{40} \ \frac{\rm erg}{\rm s} \quad \left[\frac{\langle \sigma \, v \rangle}{3 \times 10^{-26} \, {\rm cm}^3 \, {\rm s}^{-1}} \right] \quad \left[\frac{100 \ {\rm GeV}}{M_{\chi}} \right] \times {\rm Boost}$$

$$L(\vec{x}) = \frac{\rho(\vec{x})^2}{M_{\chi}^2} \langle \sigma v \rangle M_{\chi}$$

• $L_{\rm DM} \propto \frac{1}{M_{\chi}}$

$$\bigcirc \langle \rho(\vec{x})^2 \rangle \ge \langle \rho(\vec{x}) \rangle^2$$

"Granularity" boosts the power output.

• The "WIMP miracle" $v_{\text{freeze out}} \simeq 0.2 \div 0.3$ $\langle \sigma v \rangle \simeq 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1} \quad v_{\text{Galaxy}} \simeq 10^{-3}$

First possibility: Sommerfeld effect

Different possibilities for extrapolating the cross section from the early Universe:

 a non-perturbative enhancement in the cross section at low velocities

Hisano, Matsumoto & Nojiri,(2003); e.g.: Cirelli et al., arXiv:0809.2409

DM is charged under a (new) gauge force, mediated by a "light" boson: this sets a non-perturbative long-range interaction, analogously to Coulomb interaction for positronium:

$$V(r) = -\frac{\alpha}{r}$$
 gives the enhancement $S = \frac{\alpha}{r}$ in the cross section:

$$S = \left| \frac{\psi(\infty)}{\psi(0)} \right|^2 = \frac{\pi \, \alpha / v}{1 - e^{-\pi \, \alpha / v}} \xrightarrow{v \,\ll\, \alpha} \frac{\pi \, \alpha}{v}$$

The same 1/v enhancement is obtained for a Yukawa potential. In a DM context, first studied in the MSSM for pure very massive Winos or Higgsinos and weak interaction as gauge force (light W boson lPiero Ullio

DM – Nuclei Elastic Scattering $\sigma(\chi + A \to \chi + A)$ $d\sigma$ $\frac{d\cos\theta^*}{d\cos\theta^*}\Big|_{(\chi+A\to\chi+A)}$

Direct detection Accretion in Sun, Stars....

[effect on Star formation near the galactic center]

Photon emission from DM annihilation

Photons from Dark Matter

$$\phi_{\gamma}(\Omega) = K_{\gamma} J(\Omega) \left[\frac{dn}{dE}(E) \Big|_{\chi\chi \to \gamma} \right] \quad \text{Spectrum}$$

$$K_{\gamma} = \frac{1}{4\pi} \left[\frac{\langle \sigma v \rangle}{2} \left[\frac{\langle \rho_{\odot} \rangle^{2}}{M_{\chi}^{2}} R_{\oplus} \right] \right]$$

$$K_{\gamma} \simeq 3.7 \times 10^{-10} \left[\frac{\langle \sigma v \rangle}{3 \times 10^{-6} \text{ cm}^{3} \text{ s}^{-1}} \right] \left[\frac{100 \text{ GeV}}{M_{\chi}} \right]^{2}$$

$$J(\Omega) = \frac{1}{R_{\odot}} \int_{0}^{\infty} d\ell \ \rho(\ell; \Omega) \qquad \text{Adimensional}$$
Angular factor

$E_{\gamma} > 100 \text{ MeV}$

Angular dependence of the Photon flux

Angular dependence of the Photon flux

$$\frac{1}{4 \pi} \int d\Omega \ J(\Omega) \simeq 3.0$$
 (3.5, 1.8)

Fermi sensitivity: A = 9500 cm2

 $AT \simeq 0.45 \times 10^{11} \text{ cm}^2 \text{ s } N_{\text{years}}$

$$N_{\gamma}^{\rm NFW} \simeq 430 \; \left[\frac{\langle \sigma \, v \rangle}{3 \times 10^{-26} \, {\rm cm}^3 \, {\rm s}^{-1}} \right] \; \left[\frac{100 \; {\rm GeV}}{M_{\chi}} \right]^2 \; N_{\rm years}$$

Charged Particles:

Magnetic confinement Energy Loss

Total power radio continuum at $\lambda 90$ cm obtained from VLA observations with 70" resolution. Contours are at 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, and 3077 × 8 mJy/beam.

The PAMELA Positron DATA

Evidence for DM

or

New Astrophysical processes ?

PAMELA

detector

Launch 15^{th} june 2006

(3 years ago)

Agreement With standard production mechanism

An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV

An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV

Solar Modulations

BESS proton flux measurements

Moving magnetic scattering centers

 $\mathbf{E}_{\mathbf{f}} = \mathbf{E}_{\mathbf{i}} - \mathbf{Z} \Delta \mathbf{V}$

Reasonably good approximation:

The effect of the solar wind is equivalent to a POTENTIAL with particles losing an energy $\Delta E = Z V$

An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV

High energy: ratio e+/egrow with E !! $\frac{\phi_{e^+}}{\phi_{e^-}} \propto E^{0.52}$

Very unexpected result for the "astrophysical background"

FERMI: electron + positron flux

FERMI: electron + positron flux

FERMI: electron + positron flux

Proton and electron energy spectra

 E_{kinetic} (GeV)

Proton and electron + Positron energy spectra

 E_{kinetic} (GeV)

Balloon experiment (electron + positron)

ATIC

Results

Which DM spectra can fit the data? E.g. a DM with: -mass $M_{\rm DM} = 150 \,{ m GeV}$ -annihilation DM DM $\rightarrow W^+W^-$ (a possible SuperSymmetric candidate: wino)

30% Yes! PAMELA 08 10% Positron fraction 3% background? 1% 0.3% 10³ 10 10^{2} 10^{4} Positron energy in GeV

Positrons:

Anti-protons:

Results

Which DM spectra can fit the data? E.g. a DM with: -mass $M_{\rm DM} = 10 \,{ m TeV}$ -annihilation DM DM $\rightarrow W^+W^$ but...: -boost $B = 2 \cdot 10^4$

Positrons:

Anti-protons:

Stockholm University Requires non standard DM properties

"Leptophilic" DM ? Leptonically decaying DM ?

Boost Factor from clumpy DM ?

Sommerfeld enhancement ?

"STANDARD DESCRIPTION" of the Cosmic Ray fluxes

Fundamental propagation equation: $\frac{\partial n(E,\vec{r},t)}{\partial t} = \left| q(E,\vec{r},t) + \vec{\nabla} \cdot D(E,\vec{r}) \, \vec{\nabla} n(E,\vec{r},t) \right| - \frac{\partial}{\partial E} \left[\beta(E,\vec{r}) \, n(E,\vec{r},t) \right]$ Source Diffusion **Energy Loss** $\frac{n(E, \vec{r}, t)}{\tau_{\rm int}(E)} - \frac{n(E, \vec{r}, t)}{\tau_{\rm dec}(E)}$ • Source $q(E, \vec{r}, t)$ additional terms: • Diffusion coefficient $D(p/Z, \vec{r})$ • Energy Loss $\beta(E, \vec{r})$ interaction

decay

convection

reacceleration

Escape as "absorbing boundary condition" The diffusion coefficient become infinity at the boundary

Galaxy as a cylinder

$$\tau_{\rm escape}(E) = \frac{z_{\rm halo}^2}{4\,D(E)}$$

$$\tau_{\rm loss}(E) = \frac{1}{b\,E}$$

$$-\frac{dE}{dt} = \left(\frac{4}{3}\,\sigma_{\rm Th}\,\frac{B^2}{8\pi}\,\frac{1}{m^2}\right) E^2$$

$$\tau_{\text{interaction}}(E) = \frac{1}{\sigma_{pp} c \langle n_{\text{ism}} \rangle}$$

$$au_{ ext{linear}} = rac{z_{ ext{halo}}}{c}$$

$$\tau_{\rm escape}(E) = 39 \times \left[\frac{z_{\rm halo}}{3 \,\,{\rm Kpc}}\right]^2 E_{\rm GeV}^{-\delta} \,\,{\rm Myr}$$

$$\tau_{\rm loss}(E) = 350 \times \left[\frac{6 \ \mu Gauss}{\langle B \rangle}\right]^2 E_{\rm GeV}^{-1} \, \text{Myr}$$

 $\tau_{\mathrm{interaction}} = 175 \times$

$$\left[\frac{\mathrm{cm}^{-3}}{\langle n_{\mathrm{ism}} \rangle}\right] \text{ Myr}$$

$$\tau_{\text{linear}} = 3.26 \times 10^3 \left[\frac{z_{\text{halo}}}{\text{Kpc}} \right] \text{ years}$$

$$n_p(E) \simeq q_p(E) \ au_{
m esc}(E)$$

 $n_{e^-}(E) \simeq q_{e^-}(E) \ au_{
m loss}(E)$

Primary particles

$$q_p(E) \propto q_{e^-}(E) \propto E^{-\alpha_0} \simeq E^{-2.1}$$
 Injection

$$\tau_{\rm esc}(E) \simeq \frac{R^2}{4 D(E)} \propto E^{-\delta}$$
$$\tau_{\rm loss}(E) = \frac{1}{b E}$$

Secondaries

$$n_{\overline{p}}(E) \propto n_p(E) \ \tau_{\rm esc}(E) \propto q_p(E) \ \tau_{\rm esc}(E) \ \tau_{\rm esc}(E)$$

$n_{e^+}(E) \propto n_p(E) \ \tau_{\text{loss}}(E) \propto q_p(E) \ \tau_{\text{esc}}(E) \ \tau_{\text{loss}}(E)$

Figure 1. The relative abundance distribution of the elements in the cosmic radiation and in the solar system (normalized to 5i = 100) from He to Ni (solid circles, 70-280 MeV per nucleon; open circles, 1000-2000 MeV per nucleon; open diamonds, solar system abundance distribution). [Reproduced with permission from J. A. Simpson (1983). Ann. Rev. Nucl. Part. Sci. 33 by Annual Reviews, Inc.].

Secondary nuclei A + p \rightarrow A₁ + A₂

POSITRON EXCESS possible explanations:

"Near Sources"

"NEW Sources"

New Astrophysical Source (Pulsars)

New mechanism in standard sources Cascade pair injection P.Blasi

Dark Matter

Inhomogeneity in the Supernova Remnant Distribution as the Origin of the PAMELA Anomaly

Nir J. Shaviv¹, Ehud Nakar² & Tsvi Piran¹

The origin of the positron excess in cosmic rays Pasquale Blasi astro-ph/0903.2794

New mechanism in "standard Supernova acceleration" scenario

INJECTION of e+e- pairs from accelerated particles at the source

Crucial problems: Normalization Spectrum

SuperNovae as main sources of galactic CR

a

SN1006

Tycho

Cas A

HESS Telescope Observations with TeV photons

-39 -39 1100 80 80 -395 -395 60 60 40 0 20 20 40 PSF PSF 17h10m 17h15m 17h15m 17h10m

Comparison with ROSAT observation

 $\phi_{\gamma}(> 1 \text{ TeV}) = (1.47 \pm 0.17 \pm 0.37) \times 10^{-7} \text{ m}^{-2} \text{ s}^{-1}$

PULSARS

CRAB Nebula

 $P_{\rm Crab} = 0.0334 \ {\rm s}$

$$\dot{P}_{\rm Crab} = 4.2 \times 10^{-13} \text{ s}$$

$$(\Delta P_{\rm Crab})_{\rm year} = 13.2 \times 10^{-6} \text{ s}$$

CRAB Nebula

Red Radio Green Optical Blue X-rays

Fermi Pulsar detection

Hooper, Blasi, Serpico 2008

Contribution from single close Pulsar

"Direct" Search for Dark Matter

Elastic scattering

$$E_{\text{nucleus}} = M_A + \left[\frac{1}{2}M_{\chi}v^2\right] \frac{4M_A M_{\chi}}{(M_A + M_{\chi})^2} \left(\frac{1 - \cos\theta^*}{2}\right)$$
$$0 \le E_{\text{recoil}} \le \left[\frac{1}{2}M_{\chi}v^2\right] \frac{4M_A M_{\chi}}{(M_A + M_{\chi})^2}$$
$$E_{\text{recoil}}^* \simeq 39 \text{ KeV} \left[\frac{M_{\chi}}{100 \text{ GeV}}\right] \left[\frac{v_0}{220 \text{ km s}^{-1}}\right]^2 r$$

WIMP detection

$$\sigma_{\chi A} = \sigma_{
m spin \ independent} + \sigma_{
m spin \ dependent}$$

Target not point-like: Form Factor

$$Q^2 = 2 M_A E_{\text{recoil}}$$

$$\frac{d\sigma_p}{d\cos\theta^*} = \frac{\sigma_p}{2} \ F_p(Q^2)$$

$$\frac{d\sigma_A}{d\cos\theta^*} = \frac{\sigma_A}{2} \ F_A(Q^2)$$

$$\sigma_p \propto \left(\frac{M_{\chi} M_p}{M_{\chi} + M_p}\right)^2$$

$$\sigma_A \propto \left(\frac{M_{\chi} M_A}{M_{\chi} + M_A}\right)^2$$

$$\begin{split} \text{Spin independent: coherent scattering}} + \text{kinematics} \\ \sigma_A &= \sigma_p \; A^2 \; \left(\frac{M_\chi \, M_p}{M_\chi + M_p} \right)^{-2} \; \left(\frac{M_\chi \, M_A}{M_\chi + M_A} \right)^2 \end{split}$$

$$M_A \simeq A M_p$$

L

$$\sigma_A = \sigma_p \; A^4 \; \left(\frac{M_\chi + M_p}{M_\chi + A M_p} \right)^2 \; \left[\begin{array}{c} {\rm Strong \; dependence} \\ {\rm on \; mass \; number \; A} \end{array} \right]$$

 $K \equiv E^*_{\text{recoil}}$

Scattering RATE

$$K^* = \frac{1}{2} M_{\chi} v_0^2 \frac{4 M_{\chi} M_A}{(M_{\chi} + M_A)^2}$$

$$\frac{dR_A}{dK} = \left[\frac{\rho_{\chi}}{M_{\chi} M_A} v_0 \sigma_A\right] F_A^2(2 M_A K) \left\{\frac{1}{K^*} F\left(\frac{K}{K^*}, t\right)\right\}$$

Prefactor
$$\frac{9.3}{A} (\text{Kg day})^{-1} \left[\frac{50 \text{ GeV}}{M_{\chi}} \right] \left[\frac{\sigma_A}{10^{-36} \text{ cm}^2} \right] \left[\frac{v_0}{220 \text{ km/s}} \right]$$
Nuclear
Form
Factor

Velocity Distribution $K \equiv E^*_{\text{recoil}}$

Scattering RATE

$$K^* = \frac{1}{2} M_{\chi} v_0^2 \frac{4 M_{\chi} M_A}{(M_{\chi} + M_A)^2}$$

$$\frac{dR_A}{dK} = \left[\frac{\rho_{\chi}}{M_{\chi} M_A} v_0 \sigma_A\right] F_A^2(2 M_A K) \left\{\frac{1}{K^*} F\left(\frac{K}{K^*}, t\right)\right\}$$

PrefactorNuclearUniversal
$$\frac{9.3}{A} (\text{Kg day})^{-1} \left[\frac{50 \text{ GeV}}{M_{\chi}}\right] \left[\frac{\sigma_A}{10^{-36} \text{ cm}^2}\right] \left[\frac{v_0}{220 \text{ km/s}}\right]$$
NuclearUniversalForm
FactorForm
FactorVelocity
DistributionCRUCIAL signature A-dependenceVelocity
Distribution

 $K \equiv E^*_{\text{recoil}}$

Scattering RATE

$$K^* = \frac{1}{2} M_{\chi} v_0^2 \frac{4 M_{\chi} M_A}{(M_{\chi} + M_A)^2}$$

$$\frac{dR_A}{dK} = \left[\frac{\rho_{\chi}}{M_{\chi} M_A} v_0 \sigma_A\right] F_A^2(2M_A K) \left\{\frac{1}{K^*}F\left(\frac{K}{K^*},t\right)\right\}$$

$$F\left(\frac{K}{K^*}, w_{\oplus}(t)\right) = \frac{1}{v_0} \int_{\operatorname{vmin}(K)}^{\infty} dv \; \frac{f(v, t)}{v}$$

$$v_{\min}(K) = \sqrt{\frac{K}{2 M_{\chi} r}} = \frac{v_0}{\sqrt{2}} \sqrt{\frac{K}{K^*}}$$

$$ec{w}_\oplus(t) = ec{w}_\odot + ec{v}_{
m orbit}(t)$$

$$w_{\oplus}(t) \simeq w_{\odot} + \sin \gamma \, v_{\text{orbit}} \, \cos[\omega(t-t_0)]$$

"Halo rest frame"

Velocity of Earth in the Halo rest frame

[Co-rotation ?]

Velocity distribution in "halo rest frame"

A = 127 (Iodium) $M_{wimp} = 50 \text{ GeV}$ Quasi exponential distribution

$$\frac{dR}{dE_{\text{recoil}}}(E_{\text{recoil}},t) = R_0(E_{\text{recoil}}) + A(E_{\text{recoil}}) f(t)$$

$$f(t) \simeq \cos\left[\frac{2\pi}{T_0} \left(t - t_0\right)\right]$$
$$A(K) = \left[\frac{\rho_{\chi}}{M_{\chi} M_A} \sigma_A\right] \left[\sin \gamma v_{\text{orbit}}\right] F_A^2(2M_A K) \left\{\frac{1}{K^*} G\left(\frac{K}{K^*}\right)\right\}$$

$$G(x) = v_0 \left. \frac{d}{dw} F(x, w) \right|_{w = w_{\odot}}$$

Directional Response

 $M_{\chi} = 11.6 \text{ GeV}$ A = 127

Detector at LNGS position

DAMA-LIBRA

(Gran Sasso)

Dama average Counting Rate

 $1 \text{ KeV}_{ee} \simeq 11 \text{ KeV}_{\text{recoil}}$

ee [electron equivalent]

2-6 keV

Gaussian with detector resolution

Different Particles, Different Interactions

WIMPs and Neutrons scatter from the Atomic Nucleus

> Photons and Electrons scatter from the Atomic Electrons

- Most backgrounds (e, γ) produce electron recoils
- WIMPS and neutrons produce nuclear recoils.

Echarge

- Z-sensitive Ionization and Phonon mediated
- 250 g Ge, 100 g Si crystals
 1 cm thick, 7.5 cm diameter
- Photolithographically patterned to collect phonon and ionization signals
 - xy position imaging
 - surface rejection from pulse shapes
- 30 detectors stacked into 5 towers of 6 detectors

CDMS II Experiment

- 30 detectors installed and operating in Soudan since June 06.
 - 4.75 kg of Ge, 1.1 kg of Si
- Seven Total Data Runs:
 - R123 R124:
 - taken: (10/06 3/07) (4/07 7/07)
 - exposure: ~400 kg-d (Ge "raw")
 - PRL 102, 011301 (2009)
 - R125 R128
 - taken: (7/07 1/08) (1/08 4/08)
 - (5/08 8/08) (8/08 9/08)
 - exposure: ~ 750 kg-d (Ge "raw")
 - Under Analysis
 - R129:
 - taken: (11/08 3/09)

Jodi Cooley - Stanford University

Background Rejection

- Most backgrounds (e, γ) produce electron recoils
- WIMPS and neutrons produce nuclear recoils.
- Ionization yield (ionization energy per unit phonon energy) strongly depends on particle type.

2341 FEET BELOW THE SURFACE

689 FEET BELOW SEA LEVEL

SUF 17 mwe 0.5 n/d/kg (182.5 n/y/kg) Soudan 2090 mwe 0.05 n/y/kg SNOLAB 6060 mwe 0.2 n/y/ton (0.0002 n/y/kg)

CDMS II Results

PRL 102, 011301 (2009)

CDMS II Results

PRL 102, 011301 (2009)

Upper limit at the 90% C.L. on the WIMP-nucleon crosssection is

4.6 x 10⁻⁴⁴ cm² for a WIMP of mass **60 GeV/c²**

TAUP 09

Jodi Cooley - Stanford University

1400 m Rock (3100 mwe)

XENON10 Results

Projected (20012) Osi~2x10-46 cm2

more detector photos at: http://xenon.astro.columbia.edu/

The XENON two-phase TPC

> > 99.5% ER rejection via Ionization/Scintillation ratio (S2/S1)

Summary

- XENON100: 1st 100 kg scale LXe dark matter experiment operating underground
- > Two-phase TPC works as designed: currently optimizing response with sources
- Neutron Calibration by Fall 09 and 1st dark matter search before end of 2009
- XENON100+ :funded and moving ahead with design and tests of key technologies

Dark Matter searches [Indirect and Direct] are sensitive and Powerful and study a significant fraction of [but not the entire] space of the "WIMP hypothesis" (weakly interacting relic particle) for the nature of the Dark Matter. Dark Matter searches [Indirect and Direct] are sensitive and Powerful and study a significant fraction of [but not the entire] space of the "WIMP hypothesis" (weakly interacting relic particle) for the nature of the Dark Matter.

DAMA-LIBRA:

Tension with the null-results of other experiments Becomes increasingly strong. [tension is reduced considering channeling]

" (VERY) non standard models for DM" could be viable:

Inelastic Dark Matter

Mirror Matter

"Axion Like particle"

DAMA-LIBRA:

Tension with the null-results of other experiments Becomes increasingly strong. [tension is reduced considering channeling]

" (VERY) non standard models for DM" could be viable:

Inelastic Dark Matter

Mirror Matter

"Axion Like particle"

Prediction (and wish):

Life will be interesting in DM searches