Higher orders and resummations for precision physics

giuseppe bozzi

Università degli Studi di Milano and INFN Sezione di Milano

LC 09 Perugia, 22.09.2009

.

< 47 ▶

Next challenges at colliders

Precision QCD

- H,W,Z and heavy quark hadroproduction
 - \rightarrow measured with high experimental accuracy
- Multijet final states
 - $\rightarrow~$ background to SUSY, UED, \ldots
 - \rightarrow measurement of couplings ($e^+e^- \rightarrow t\bar{t}H$, $e^+e^- \rightarrow HHZ$)
- Precision measurement of α_S from event shapes

LO is not enough

- Large renormalization scale uncertainty (α_S scale not defined)
- Large factorization scale uncertainty
- Large corrections from higher orders
- Jet structure appears only beyond LO
- \rightarrow Reliable predictions only at NLO
- → Reliable estimate of errors only at NNLO
- \rightarrow Resummation necessary in some region of the phase space

State of the Art - at a glance

Relative Order	$2 \rightarrow 1$	$2 \rightarrow 2$	$2 \rightarrow 3$	$2 \rightarrow 4$	$2 \rightarrow 5$	$2 \rightarrow 6$
$\begin{array}{c} 1\\ \alpha_s\\ \alpha_s^2\\ \alpha_s^3\\ \alpha_s^4\\ \alpha_s^5\\ \alpha_s^5\end{array}$	LO NLO NNLO NNNLO	LO NLO NNLO	LO NLO	LO NLO	LO NLO	LO

- LO Automated and under control, even for multiparticle final states
- NLO Well understood for $2 \rightarrow 1$ and $2 \rightarrow 2$ in SM and beyond
- NLO Many new $2 \rightarrow 3$ calculations from Les Houches wish list since 2007
- NLO Very first $2 \rightarrow 4$ LHC cross section in 2008 $q\bar{q} \rightarrow t\bar{t}b\bar{b}$
- **NLO** Important developments in automation, W + 3 jets (2009)
- NNLO Inclusive and exclusive Drell-Yan and Higgs cross sections
- NNLO $e^+e^- \rightarrow 3$ jets, but still waiting for $pp \rightarrow \text{jets}, W + \text{jet}, t\bar{t}, VV$
- NNNLO F_2 , F_3 and form-factors

QCD at the LHC - p. 5

< ロ > < 同 > < 回 > < 回 >

NLO Automation

 Combination of infrared divergent parts (dipole subtraction) has become standard and automated

```
[Gleisberg,Krauss(SHERPA);Frederix,Gehrmann,Greiner(MadGraph)
Seymour,Tevlin(TevJet)Hasegawa,Moch,Uwer]
```

One-loop matrix elements: major breakthroughs

Unitarity Methods

Use unitarity cuts on loop diagrams to compute tensor coefficients as products of tree amplitudes

- [Bern, Dixon, Dunbar, Kosower(94);
 - Britto, Cachazo, Feng(04);
- Berger, Bern, Dixon, Forde, Kosower(06);
 - Giele, Kunzst, Melnikov(08)]

OPP Method

New reduction formalism for tensor integrals: reduce 1-loop amplitudes to scalar integrals at the integrand level

[Ossola, Papadopoulos, Pittau(06)]

implemented in BlackHat, Helac/CutTools, Rucola

QCD @ ILC

Available codes

• Rocket [Giele, Zanderighi (08)]

- up to 1-loop 20 gluon amplitudes! [Giele, Zanderighi (08)]
- 1-loop W+5j amplitudes [Ellis,Giele,Kunzst,Melnikov,Zanderighi(08)]
- NLO W+3j cross section [Ellis, Melnikov, Zanderighi (08)]

• BlackHat [Berger et al. (08)]

- 1-loop 8 gluon amplitudes
- 1-loop W+5j amplitudes (2008)
- NLO W+3j cross section (2009)

• Helac/CutTools [Cafarella et al.(09)]

- 1-loop amplitudes for *qq*, *gg* → *ttbb*, *bbbb*, *W*⁺*W*⁻*bb*, *ttgg*, *Wggg*, *Zggg*
- NLO $pp \rightarrow t\bar{t}b\bar{b}$ cross section

[Bevilacqua,Czakon,Papadopoulos,Pittau,Worek(09)] [see also Bredenstein,Denner,Dittmaier,Pozzorini(09)]

< ロ > < 同 > < 回 > < 回 >

• Goal at NLO: all $2 \rightarrow 4(5,6)$ processes with Unitarity/OPP methods

Parton Shower Generator	Matrix Element Generator		
Resums leading logs to all orders	Only go up to NLO		
High multiplicity hadrons in final state	Low multiplicity partons in final state		
Good for regions of low relative p_T	Good for regions of high relative p_T		
Total rate accurate to LO	Total rate accurate to NLO		

The perfect matching

- generates total rates accurate at NLO
- treats hard emission as in Matrix Element Generators
- treats soft/collinear emission as in Parton Shower Generators
- generates a set of fully exclusive events which can be interfaced with a hadronization model

NLO Matching

- MC@NLO [Frixione, Webber(02)]
 - Add difference between exact(ME) NLO and approx.(PS) NLO
 - \rightarrow dependent on the shower details
 - → difference may be negative
- POWHEG [Nason(04)]
 - Generate the hardest emission at NLO accuracy (mod. Sudakov)
 - Angular-ordered showers: add truncated shower from hard scale
 - always positive weights

giuseppe bozzi (milano u.)

QCD @ ILC

- For a general $2 \rightarrow n$ process we need
 - Two-loop amplitude for $2 \rightarrow n$
 - One-loop amplitude for $2 \rightarrow n+1$
 - Tree-level amplitude for $2 \rightarrow n+2$
- Each term has its own singularities
 - Ultraviolet (removed by renormalization)
 - Infrared (have to cancel among each other)
- → Much more difficult than NLO cancellation!

Cancellation of singularities

• Fully inclusive quantities

- analytical computation of contributions is possible
- explicit cancellation of singularities
- → DIS [Zijlstra,van Neerven(92)]
- → Single Hadron [Rijken, vanNeerven(97); Mitov, Moch(06)]
- \rightarrow DY [Hamberg, van Neerven, Matsuura(91)]
- → H [Harlander,Kilgore(02);Anastasiou,Melnikov(02);Ravindran,Smith,van Neerven(03)]

Fully exclusive quantities (real world!)

• IR singularity structure at NNLO understood

[Catani,Grazzini;Campbell,Glover;Bern,DelDuca,Kilgore,Schmidt; Kosower,Uwer;Sterman,Tejeda-Yeomans]

- numerical integration still very difficult
- → Sector Decomposition
- → Subtraction Method

< ロ > < 同 > < 回 > < 回 >

Sector Decomposition

"Split the integration region into sectors, each containing a single singularity, and explicit the pole by expanding it into distributions"

Binoth, Heinrich [00,04]; Anastasiou, Melnikov, Petriello [04]

AMP developed a fully automated procedure to compute pole coefficients and finite terms and applied it to

H/W/Z(04), QED μ -decay(05), $b \rightarrow c l \bar{\nu}_l(08)$

giuseppe bozzi (milano u.)

Subtraction Method

"Add and subtract a local counterterm with the same singularity structure of the real contribution that can be integrated analytically over the phase space of the unresolved parton"

> NLO:Ellis,Ross,Terrano[81];Frixione,Kunzst,Signer[95];Catani,Seymour[96] (NNLO):Kosower[03,05];Weinzier1[03];Frixione,Grazzini[04]

Gehrmann, Glover [05]; Somogyi, Trocsanyi, DelDuca [05, 07]

$$d\sigma = \int_{n+1} r d\Phi_{n+1} + \int_n v d\Phi_n$$

$$d\sigma = \int_{n+1} (r d\Phi_{n+1} - \tilde{r} d\tilde{\Phi}_{n+1}) + \int_{n+1} \tilde{r} d\tilde{\Phi}_{n+1} + \int_n v d\Phi_n$$

The Antenna Subtraction Method developed by A and T. Gehrmann and Glover has been used for the NNLO QCD calculation of

$$e^+e^- \rightarrow 3$$
 jets (next talk)

A.Gehrmann, T.Gehrmann, Glover, Heinrich[07]

NNLO subtraction has been applied also to Higgs and Vector Boson production at the LHC

30 $pp \rightarrow H + X \rightarrow WW + X \rightarrow l\nu l\nu + X$ MRST2004 $DD \rightarrow (Z + \gamma^*) + X \rightarrow e^+ e^- + X$ √s=14 Tel $u_{\mathbf{p}} = \mu_{\mathbf{p}} = \mathbf{m}$ $M_{\mu}/2 \leq \mu_{P} = \mu_{P} \leq 2M_{\mu}$ $M_{\mu} = 165 \text{ GeV}$ MSTW2008 MRST2004 selection cuts 60 NNLO 20 r(pb/bin) (qj) 15 6 10 NNLO 20 20 30 70 100 -2 preto (GeV)

H:Catani,Grazzini[07];W,Z:Catani,Cieri,DeFlorian,Ferrera,Grazzini[09]

Cuts greatly affect the impact of NNLO corrections in the Higgs case!

Resummation: well-known examples

• $\log(Q/Q_0)$

- evolution of pdfs from input scale Q₀ to hard scale Q
- collinear radiation from colliding partons: single logs
- systematically resummed by DGLAP equation
- $\log(Q/\sqrt{S})$
 - hadronic c.m. energy \sqrt{S} much larger than hard scale Q
 - multiple radiation over wide rapidity range: single logs
 - systematically resummed by BFKL equation
- $\log(Q^2/q_T^2)$
 - systems with invariant-mass $Q \gg q_T$
 - soft and collinear gluon emission: single and double logs
 - treated by means of soft-gluon resummation
- $\log(1 T)$ (next talk)
 - when the event is *pencil-like*, i.e. $T \rightarrow 1$
 - soft and collinear gluon emission: single and double logs
 - treated by means of soft-gluon resummation

Resummation: the main idea

$\alpha_s L^2$	$\alpha_{s}L$			$\mathcal{O}(\alpha_s)$	(<i>LO</i>)
$\alpha_s^2 L^4$	$\alpha_s^2 L^3$	$\alpha_s^2 L^2$	$\alpha_s^2 L$	$\mathcal{O}(\alpha_s^2)$	(NLO)
$\alpha_s^n L^{2n}$	$\alpha_s^n L^{2n-1}$	$\alpha_s^n L^{2n-2}$		$\mathcal{O}(\alpha_s^n)$	(N^nLO)
LL	NLL	NNLL			

- Ratio of two successive rows: $O(\alpha_s L^2)$
- improved expansion
 - reorganization of the terms into towers of logs
 - all-order summation of the terms in each class
- key-point: exponentiation

 $\sigma^{res} \sim \exp\left[Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots\right]$

• Ratio of two successive columns: O(1/L)

Exponentiation

The observable must fulfill factorization properties both for

- dynamics (matrix element)
 - → in the soft limit, multigluon amplitudes fulfill generalized factorization formulae given in terms of single gluon emission probability

- kinematics (phase space)
 - → usually factorizable working in *conjugate space*

$$egin{array}{rl} \delta^{(2)}(q_T-q_{T1}-\cdots-q_{Tn})&=&\int d^2b\;e^{ib\cdot q_T}\;\Pi_i\;e^{ib\cdot q_T}\ \log(Q^2/q_T^2)& o&\log(Q^2b^2) \end{array}$$

 \rightarrow generalized exponentiation of single gluon emission

The resummed result has to be properly matched with the fixed-order calculation to avoid double counting

$$\sigma = \sigma^{\rm res} + \sigma^{\rm fix} - \sigma^{\rm asym}$$

where σ^{asym} = expansion of resummed result to same order

- $q_T \ll Q$: $\sigma^{\textit{fix}} \sim \sigma^{\textit{asym}} \rightarrow \sigma = \sigma^{\textit{res}}$
- $q_T > Q$: $\sigma^{res} \sim \sigma^{asym} \rightarrow \sigma = \sigma^{fix}$
- intermediate q_T : matching $\rightarrow \sigma$

The all-orders crew

Higgs

→ Bozzi, Catani, deFlorian, Grazzini, Nason, Moch, Vogt, Laenen, Magnea, Idilbi, Ji, Ma, Yuan, Kulesza, Sterman, Vogelsang,..., SEGMENTATION FAULT

Drell-Yan

→ Balazs, Yuan, Ellis, Ross, Veseli, Kulesza, Stirling, Sterman, Vogelsang,

Bozzi,Catani,DeFlorian,Ferrera,Grazzini,Qiu,Zhang,Vogt,...,SEGMENTATION FAULT

Event Shapes

Catani, Trentadue, Turnock, Webber, Andersen, Gardi, Rathsman, Banfi, Salam, Zanderighi,

Gehrmann, Luisoni, Stenzel, Berger, Sterman, ..., SEGMENTATION FAULT

SUSY

→ Bozzi, Fuks, Klasen, Debove, Morel, Li, Ledroit, ..., SEGMENTATION FAULT

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

NLO

- divergent
- unphysical peak
- NNLL+NLO
 - well-behaved
 - physical peak
 - converges to NLO at high q_T

 q_T -dependent K-factor

$$\mathcal{K}(q_T, y) = rac{d\sigma_{NNLL+NLO}/(dq_T \, dy)}{d\sigma_{NLO}/(dq_T \, dy)}$$

→ mild rapidity dependence → resummation relevant both at small and intermediate q_T

∃ >

- Normalized q_T distribution
- Scales fixed to Z mass
- → Uncertainty dominated by Q variation
- → Good agreement with Run II D0 data

< 47 ▶

 ^e Experimental errors are smaller than theoretical uncertainty
 → more accurate perturbative predictions (NNLL+NLO)

(4) (5) (4) (5)

Event shapes

- Event-shape variables $V(p_1, \ldots, p_n)$ are continuous measures of the geometrical properties of hadron energy-momentum flow.
- Thrust: longitudinal particle alignment

$$T \equiv \frac{1}{Q} \max_{\vec{n}_T} \sum_i |\vec{p}_i \cdot \vec{n}_T| \qquad \Sigma(t) = \operatorname{Prob}(1 - T < t)$$
Pencil-like event: $t \ge 0$
Planar event: $t \ge 1/3$

- ILC is useful for QCD (α_s , jets, event shapes, heavy quarks)
- Precision QCD is mandatory for ILC (high experimental accuracy)
- More and more sofisticated tools are becoming available
- Need to continue the effort on the theoretical side

Thanks for your attention!