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we all believe that no matter what will be discovered (or not) at the 
LHC, the ILC will provide complementary information

given the high energy involved, the ILC can be a discovery machine, but 
thanks to the very clean e+e- environment the ILC will be mainly a 
precision machine

From the high precision of the ILC we expect to

‣ identify the nature of new physics (discovered at the LHC?) by doing 
direct and indirect measurements of particle properties  

‣ constrain new physics and model parameters (e.g. heavy masses, 
couplings)



Accurate theoretical perturbative predictions desirable at hadron 
colliders and indispensable at e+e- linear collider in order to match the 
accuracy of experimental measurements. Processes with many particles 
in the final state are the most important backgrounds and have typically 
have much larger uncertainties at LO 
☛ NLO predictions essential 

Why NLO
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 [Unitarity in D=4]
 [Unitarity in D≠4]
 [All one-loop N-gluon amplitudes]
 [Massive fermions, ttggg amplitudes]
 [W+5p one-loop amplitudes] 
 [W+3 jets]  

    [Unitarity, oneloop from trees]
[OPP]
[Generalized cuts]
 

Brief reminder of main ideas of D-dimensional unitarity at NLO
Recent new results for Tevatron/LHC for W + 3jet production
Towards applications for LEP/ILC (➠ 5 jets , V + multi-jets)
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Decomposition of the one-loop amplitude

εC = log10

|Av,unit
N − Av,anly

N |
|Av,anly

N |
(1)

τtree =

(
N

3

)

E3 +

(
N

4

)

E4 ∝ N4 (2)

τone−loop,N ∼ ntree · τtree,N ∝ N9 (3)

AD({pi}, {Ji}) =
∫ dD l

i(π)D/2

N ({pi}, {Ji}; l)
d1d2 · · ·dN

(4)

di = di(l) = (l + qi)
2 − m2

i =



l − q0 +
i∑

j=1

pi




2

− m2
i (5)

AD
N =

∑

[i1|i4]
dD

i1i2i3i4I
(D)
i1i2i3i4 +

∑

[i1|i3]

cD
i1i2i3I

(D)
i1i2i3 +

∑

[i1|i2]
bD
i1i2I

(D)
i1i2 (6)

AD =
∑

[i1|i5]
ei1i2i3i4i5I

(D)
i1i2i3i4i5 +

∑

[i1|i4]
di1i2i3i4I

(D)
i1i2i3i4

+
∑

[i1|i3]
ci1i2i3I

(D)
i1i2i3 +

∑

[i1|i2]

bi1i2I
(D)
i1i2 +

∑

[i1|i1]
ai1I

(D)
i1 (7)

AD =
∑

[i1|i5]

ei1i2i3i4i5I
(D)
i1i2i3i4i5+

∑

[i1|i4]
di1i2i3i4I

(D)
i1i2i3i4+

∑

[i1|i3]
ci1i2i3I

(D)
i1i2i3+

∑

[i1|i2]
bi1i2I

(D)
i1i2 +

∑

[i1|i1]

ai1I
(D)
i1

(8)

ID
i1···iM =

∫ dDl

i(π)D/2

1

di1 · · · diM

(9)

l2 = l
2 − l̃2 = l21 − l22 − l23 − l24 −

D∑

i=5

l2i (10)

1

* if non-vanishing masses: tadpole term;   notation:

*

‣ coefficients depend on D (i.e. on ε) ⇒ rational part 

‣ higher point function reduced to boxes + vanishing terms

Remarks:

‣ box, triangles and bubble integrals all known analytically

[‘t Hooft & Veltman ‘79; Bern, Dixon Kosower ’93, Duplancic & Nizic ’02; 
Ellis & GZ ’08, public code ⇒ http://www.qcdloop.fnal.gov]
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Cut-constructible part

Get cut numerators by taking residues: i.e. set inverse propagator = 0
In D=4 up to 4 constraints on the loop momentum (4 onshell 
propagators) ⇒ get up to box integrals coefficients
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Construction of the box residue
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Four cut propagators are onshell 
⇒ the amplitude factorizes into 4 tree-level amplitudes

FIG. 2: The factorization of the 6-gluon amplitude for the calculation of the d2346(l) residue with

the loop momentum parametrization choice q0 = 0.

With the above prescription it is now easy to determine the spurious term for any value

of the loop momentum. Finally we note that the integration over the term

∫
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is now trivially done, giving us the coefficient of the box times the box master integral.

D. Construction of the triangle residue

To calculate the triangle coefficients we need to put three propagators on-shell. Care

has to be taken to remove the box contributions by explicit subtraction. Thus, the triangle

coefficient is given by
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Decomposing the loop momentum in the NV-basis of the three inflow momenta of the triangle

with di = dj = dk = 0 (choosing qk = 0) gives us according to Eq. (18)

lµ = V µ
3 + α1n

µ
1 + α2n

µ
2 , (41)
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‣ similarly, product of 3 (2) tree level amplitudes allows one to compute 
the coefficients triangles (bubbles) once box contributions are subtracted

Remarks:

‣ implicit sum over two helicity states of the four cut gluons

‣ tree-level three-gluon amplitudes are non-zero because the cut gluons 
have complex momenta

‣ this procedure, in D=4, gives the cut-constructible part of the amplitude



One-loop virtual amplitudes

Cut constructible part can be obtained by taking residues in D=4

Contents
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1. Introduction

The current TEVATRON collider and the upcoming Large Hadron Collider need a good
understanding of the standard model signals to carry out a successful search for the Higgs
particle and physics beyond the standard model. At these hadron colliders QCD plays an
essential role. From the lessons learned at the TEVATRON we need fixed order calculations
matched with parton shower Monte Carlo’s and hadronization models for a successful
understanding of the observed collisions.

For successful implementation of numerical algorithms for evaluating the fixed order
amplitudes one needs to take into account the so-called complexity of the algorithm. That
is, how does the evaluation time grows with the number of external particles. An algo-
rithm of polynomial complexity is highly desirable. Furthermore algebraic methods can be
successfully implemented in efficient and reliable numerical procedures. This can lead to
rather different methods from what one would develop and use in analytic calculation.

The leading order parton level generators are well understood. Generators have been
constructed using algebraic manipulation programs to calculate the tree amplitudes directly
from Feynman diagrams. However, such a direct approach leads to an algorithm of double
factorial complexity. Techniques such as helicity amplitudes, color ordering and recursion

– 1 –

Rational part: can be obtained with D ≠ 4



Generic D dependence

Two sources of D dependence 
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[continue then to Ds = 4 - 2ε ‘t-Hooft-Veltman scheme, or Ds  = 4 FDH scheme]

Choose Ds1, Ds2 integer  ⇒ suitable for numerical implementation
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‣ Start from

‣ Use unitarity constraints to determine the coefficients, computed as 
products of tree-level amplitudes with complex momenta in higher 
dimensions

‣ Berends-Giele recursion relations are natural candidates to compute 
tree level amplitudes: they are very fast for large N and very general 
(spin, masses, complex momenta)

Berends, Giele ’88
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Cut-constructable part:

Rational part:

Vanishing contributions:



Rocket science!

But it still must be tested in battle conditions, ie a real physical process

Eruca sativa =Rocket=roquette=arugula=rucola

Recursive unitarity calculation of one-loop amplitudes

So far computed one-loop amplitudes:
✓N-gluons 
✓qq + N-gluons
✓qq + W + N-gluons
✓qq + QQ + W
✓tt + N-gluons
✓tt + qq + N-gluons [Schulze]

NB: N is a parameter in Rocket
In perspective, for gluons: 

N = 6  ⇒ 10860 diags.
N = 7  ⇒ 168925 diags.

Successfully computed up to N=20



Time for oneloop N-gluon loop amplitudes
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First physics application:  W + 3 jets

W±, TeV W+, LHC W−, LHC

σ [pb], µ = 40 GeV 74.0 ± 0.2 783.1 ± 2.7 481.6 ± 1.4

σ [pb], µ = 80 GeV 45.5 ± 0.1 515.1 ± 1.1 316.7 ± 0.7

σ [pb], µ = 160 GeV 29.5 ± 0.1 353.5 ± 0.8 217.5 ± 0.5

Table 1: Total cross section for the production of a W boson in association with three jets including
both two quark and four quark processes vs. factorization and normalization scale. The results are
obtained using the program MCFM. Cuts for the jets are pT > 15 GeV, |η| < 2 at the Tevatron
(
√

s = 1.96 TeV) and pT > 50 GeV, |η| < 3 at the LHC (
√

s = 14 TeV). The CTEQ6L1 parton
distributions which have αs(MZ) = 0.13 are used. The quoted errors are statistical only.

was suggested in Ref. [25] more than ten years ago. Important physical results obtained

using this method [26] have demonstrated both its potential and limitations. The tech-

niques of applying generalized unitarity were significantly developed in recent years thanks

to important advances in Refs. [27–31]. These developments culminated in the design of

two generalized unitarity algorithms [32, 33].

The computational algorithm suggested in Ref. [33] is employed in this paper; we will

refer to it as D-dimensional generalized unitarity. Note that this method was recently

used to obtain results not currently attainable with other methods, see e.g. Refs. [34–36].

However, an apparent weakness of generalized unitarity is that there is no single result

for any physical process that has been obtained within this framework.2 This should be

contrasted with the traditional tensor reduction approaches which never lost contact with

phenomenology and are being constantly refined to accommodate new challenges.

This is not a good situation for generalized unitarity which has to live up to the claim

of its advocates that it is a more powerful method. The only way to address this potential

criticism is to demonstrate the applicability of generalized unitarity in actual calculations

of direct phenomenological interest, preferably in processes which are beyond the reach of

traditional methods. We have chosen the production of a W boson in association with

three jets for this purpose. The reasons for our choice are as follows:

• the calculation of NLO QCD corrections to this process is of direct relevance since

it is measured at the Tevatron [2, 3]; it is not possible to use the leading order (LO)

prediction for serious comparison of theoretical and experimental results because the

LO cross section varies by as much as a factor of two under reasonable changes in

scale, see e.g. Table 1;

• measurements at the Tevatron have shown that for W + n jets with n = 1 and 2, the

data [2, 3] is well described by NLO QCD [4]; it is interesting to verify this also for

three and higher numbers of jets;

2We distinguish between generalized unitarity and application of the algorithm of Ref. [29] to Feynman

diagrams. The latter method was employed for the computation of NLO QCD corrections to a relatively

simple physical process pp → V V V in [37].

– 2 –

I. W + 3 jets measured at the Tevaton, but LO varies by more than a factor 2 
for reasonable changes in scales 
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I. W + 3 jets measured at the Tevaton, but LO varies by more than a factor 2 
for reasonable changes in scales 

II. Measurements at the Tevaton: 
for W + n jets with n=1,2 data is 
described well by NLO QCD 
⇒ verify this for 3 and more jets

W+n  jet rates from CDF

Both uncertainty on rates and deviation of Data/Theory from 1 are smaller than 

other calculations. “Berends” ratio agrees well for all calculations,

 but unfortunately only available for n!2 from MCFM.



First application:  W + 3 jets

III.W/Z + 3 jets of interest at the LHC, as one of the backgrounds to 
model-independent new physics searches using jets + MET
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IV. Calculation highly non-trivial optimal testing ground

0→ ū d g g g W+

0→ ū d Q̄Q g W+

1203 +104 Feynman diagrams

 258 +18 Feynman diagrams



First application:  W + 3 jets

III.W/Z + 3 jets of interest at the LHC, as one of the backgrounds to 
model-independent new physics searches using jets + MET

IV. Calculation highly non-trivial optimal testing ground

0→ ū d g g g W+

0→ ū d Q̄Q g W+

1203 +104 Feynman diagrams

 258 +18 Feynman diagrams

V.  Crossing of Z + 3 jets at proton colliders gives immediately 5 jet 
production at LEP/ILC. NB: data already available for 5,6 jets at LEP



Cross-section calculation

leading color tree level W+6 parton amplitudes computed recursively 

we use Catani-Seymour subtraction terms modified to deal with the 
minimal set of color structures needed at leading color

• Consider the NLO leading color approximation, keep nf dependence 
exact (important for beta function) but neglect 1/Nc2 terms

• Real radiation part:

• Real + virtual implemented in the MCFM parton level integrator 

Full-color NLO calculation also done by Berger et al. ’09



Primitive amplitudes: color structures

Leading color Subleading colorFermion loops

LC · nf

Nc

LC · nf

Nc

2-quark 
3-gluon

4-quark 
1-gluon

LC ≡ (N2
c − 1)N3

c
. . .

. . . . . .



Leading color adjustment

5

level. Although no loops are involved in the latter case, such computation is very challenging

because of the effort required to compute the relevant matrix elements and to integrate them

over high-multiplicity phase-space of the final state particles. In the next few paragraphs

we describe some ideas that are essential for overcoming these difficulties.

Our computation of one-loop virtual amplitudes for W + 3 jets employs a particular

technique called generalized D-dimensional unitarity [13]. It is one of several approaches

pursued currently which are based on a connection between one-loop scattering amplitudes

and tree-level amplitudes for complex on-shell momenta [14–21]. Amplitudes required for

the W + 3 jets computation are described in Ref. [8].

Our treatment of the real emission corrections is based on the Catani- Seymour dipole

subtraction formalism [22]. However, some modifications of the formalism are required

in our case since we deal with leading color amplitudes and extensively use symmetry of

the final state phase-space to reduce the number of color-ordered amplitudes that need to

be calculated. Modifications of the subtraction formalism as well as issues related to our

treatment of multi-particle phase-space are discussed in Ref. [7].

Because we employ leading color approximation, it is important to discuss its accuracy.

We may get an idea about the quality of the leading color approximation by studying W +3

jets at leading order and W + n jets n ≤ 2 at next-to-leading order. We find that, typically,

leading color cross-sections exceed full color cross-sections by about ten percent, consistent

with naive expectation that subleading terms are suppressed relative to leading terms by

O(1/N2
c ).

[add table here]

We also find that, to a good approximation, ratios of leading order leading-color and

leading order full-color predictions for observables, that are of interest to us, are independent

of the renormalization and factorization scales

RO =

∫
O(p)dσFC

LO(µ, p)
∫
O(p)dσLC

LO(µ, p)
. (1)

Here, O can be any observable; in particular one may think about it as a particular bin in a

histogram for some physical variable such as transverse momentum, rapidity, or jet invariant

mass. For example, for the transverse momentum distribution of the third hardest jet in

W + 3 jet sample, we find R ≈ 0.91, independent of the renormalization and factorization

scales and the transverse momentum of a jet.
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level. Although no loops are involved in the latter case, such computation is very challenging

because of the effort required to compute the relevant matrix elements and to integrate them

over high-multiplicity phase-space of the final state particles. In the next few paragraphs

we describe some ideas that are essential for overcoming these difficulties.

Our computation of one-loop virtual amplitudes for W + 3 jets employs a particular

technique called generalized D-dimensional unitarity [13]. It is one of several approaches

pursued currently which are based on a connection between one-loop scattering amplitudes

and tree-level amplitudes for complex on-shell momenta [14–21]. Amplitudes required for

the W + 3 jets computation are described in Ref. [8].

Our treatment of the real emission corrections is based on the Catani- Seymour dipole

subtraction formalism [22]. However, some modifications of the formalism are required

in our case since we deal with leading color amplitudes and extensively use symmetry of

the final state phase-space to reduce the number of color-ordered amplitudes that need to

be calculated. Modifications of the subtraction formalism as well as issues related to our

treatment of multi-particle phase-space are discussed in Ref. [7].

Because we employ leading color approximation, it is important to discuss its accuracy.

We may get an idea about the quality of the leading color approximation by studying W +3

jets at leading order and W + n jets n ≤ 2 at next-to-leading order. We find that, typically,

leading color cross-sections exceed full color cross-sections by about ten percent, consistent

with naive expectation that subleading terms are suppressed relative to leading terms by

O(1/N2
c ).
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ONLO = r · ONLO,LC
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Leading color adjustment tested in W+1 and W+2jets: OK to 3 %



CDF cuts

p⊥,j > 20GeV p⊥,e > 20GeV E⊥,miss > 30GeV

|ηe| < 1.1 M⊥,W > 20GeV

µ0 =
√

p2
⊥,W + M2

W µ = µR = µF = [µ0/2, 2µ0]

• CDF uses JETCLU with R = 0.4, but this is not infrared safe, use a 
different jet-algorithm. Argument: difference small in inclusive cross-
section [possibly larger in distributions]

• CDF applies lepton-isolation cuts. This is a O(10%) effect. Lepton-
isolation and detector acceptance cuts are believed to cancel out  
No lepton isolation applied

• PDFs: cteq6l1 and cteq6m 



Jet-algorithm choice

• anti-kt is closest to JETCLU at LO, SIScone does not do well 
However, the meaning of LO for JETCLU is questionable (NLO infinite)

8

well – the difference between SIScone and JETCLU with the same R is about twenty percent.

Perturbative studies of jet substructure [28] suggest that the jet algorithm closest to CDF’s

JETCLU jet algorithm is anti-k⊥. Therefore, it appears that anti-k⊥ algorithm should be

chosen for our calculation of W + 3 jet production cross-section at the Tevatron.

Algorithm R Ejet
⊥ > 20 GeV E3rdjet

⊥ > 25 GeV

JETCLU 0.4 1.845(2)+1.101(3)
−0.634(2) 1.008(1)+0.614(2)

−0.352(1)

SIScone 0.4 1.470(1)+0.765(1)
−0.560(1) 0.805(1)+0.493(1)

−0.281(1)

anti-k⊥ 0.4 1.850(1)+1.105(1)
−0.638(1) 1.010(1)+0.619(1)

−0.351(1)

TABLE I: Leading order cross-sections in picobarns for W + 3 jets at the Tevatron for different

jet algorithms. We use merging parameter f = 0.75 for JETCLU and f = 0.5 for SISCone. The

renormalization and factorization scales are set to µ0. The upper (lower) value corresponds to

setting both scales to µ0/2 and 2µ0, respectively. Statistical errors are also indicated. Other cuts

on jets and leptons are described in the text.

The caveat in this discussion is that since JETCLU is not an infra-red safe algorithm, the

significance of leading order comparisons is unclear since radiative corrections can be arbi-

trarily large. Hence, it is not obvious that the most appropriate jet algorithm for theoretical

calculations is the one which matches the JETCLU leading order results. To study this

question, we perform the next-to-leading order calculation using both SIScone algorithm

with R = 0.4 and f = 0.5 and the anti-k⊥ algorithm with R = 0.4. The NLO computation

with the SIScone algorithm allows us to compare our results to that of Ref. [11]. A similar

computation with the anti-k⊥ algorithm, would, if we had perfect data, tell us whether the

agreement at leading order between JETCLU and anti-k⊥ is fortuitous.

We now summarize the leading order results for the two algorithms. Using the three

choices of the renormalization and factorization scales discussed previously, to set upper

and lower bounds on the cross-section variation, we obtain the following result for leading-

color and full-color leading order cross-sections

σW+≥3j,LC

LO,E3rd jet
⊥ >25 GeV

= 0.89+0.55
−0.31 pb, σW+≥3j,FC

LO,E3rd jet
⊥ >25 GeV

= 0.81+0.50
−0.28 pb, SIScone; (3)

σW+≥3j,LC

LO,E3rd jet
⊥ >25 GeV

= 1.12+0.68
−0.39 pb, σW+≥3j,FC

LO,E3rd jet
⊥ >25 GeV

= 1.01+0.62
−0.35 pb, anti − k⊥; (4)

Leading order comparison:

• do NLO calculation both with SISCone and anti-kt 
➡ SISCone will allow us to compare with Berger et al. 
➡ anti-kt (if we had perfect data) would tell us is the LO agreement 

with JETCLU is fortuitous

[SIScone ⇒ Salam & Soyez ’07; anti-kt ⇒ Cacciari, Salam, Soyez ’08]
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Sample distribution: Et,j3

Comparison to data
• OK within large experimental errors
• even with reduced exp. errors, accurate comparison not 

possible because of different jet-algorithm used

Ellis, Melnikov, GZ ’09

Plots done by running 4 days (or less) all sub-processes in parallel
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FIG. 1: The transverse energy distribution of the third hardest jet for W +3 jet inclusive production

cross-section at the Tevatron for SIScone (left) and anti-k⊥ (right) jet algorithms. All cuts and

parameters relevant for deriving these distributions are described in the text. The leading color

adjustment procedure is applied. For experimental points, statistical and systematic uncertainties

are combined in quadrature. The bands illustrate the scale dependence at leading (green) and

next-to-leading order (red).

ξ, introduced at the previous Section, we find ξNLO
SIScone = 1.25 and ξNLO

anti−k⊥
= 1.15 which

implies that overall uncertainty in the NLO QCD prediction is twenty five percent or better.

Compared to leading order predictions, the uncertainty is reduced by at least a factor of

four.

We also find that the difference between NLO cross-sections computed with SIScone and

anti-k⊥ is smaller than the difference between corresponding leading order cross-sections.

Nevertheless, the difference at NLO is about ten percent and therefore not negligible. Ex-

perimental data seems to be closer to SIScone; however, given a twenty percent uncertainty

in data and up to twenty percent uncertainty in the NLO results, no inconsistency can be

claimed.

CDF published the transverse energy distribution of the third hardest jet in W + 3

jet inclusive production cross-section. In Fig 1, we compare the theoretical prediction for

this distribution at leading and next-to-leading order with experimental data for the two jet

algorithms. For experimental points, statistical and systematic uncertainties are combined in

quadrature. Theoretical results are rescaled by R = 0.91 bin-by-bin, following the discussion
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FIG. 2: The measured cross section dσ(W → eν+ ≥ n-jets)/dEnth-jet
T

compared to NLO predictions for n = 2, 3. In the upper
panels the NLO distribution is the solid (black) histogram, and CDF data points are the (red) points, whose inner and outer
error bars denote the statistical and total uncertainties on the measurements. The LO predictions are shown as dashed (blue)
lines. The lower panels show the distribution normalized to an NLO prediction, the full one for n = 2 and the leading-color
one for n = 3, in the experimental bins (that is, averaging over several bins in the upper panel). The scale uncertainty bands
are shaded (gray) for NLO and cross-hatched (brown) for LO. In the n = 2 case, the dotted (black) line shows the ratio of the
leading-color approximation to the full-color calculation.

narrow scale-dependence bands. See ref. [2] for details.
Our aim in this Letter is to extend this comparison

to n = 3 jets. We apply the same lepton and jet cuts
as CDF, replacing the /ET cut by one on the neutrino
ET , and ignoring the lepton–jet ∆R cut removed by
acceptance. We approximate the Cabibbo-Kobayashi-
Maskawa matrix by the unit matrix, express the W cou-
pling to fermions using the Standard Model parame-
ters αQED = 1/128.802 and sin2 θW = 0.230, and use
mW = 80.419 GeV and ΓW = 2.06 GeV. We use the
CTEQ6M [32] parton distribution functions (PDFs) and
an event-by-event common renormalization and factor-
ization scale, µ =

√

m2
W + p2

T (W ). To estimate the scale
dependence we choose five values in the range (1

2 , 2)×µ.
The numerical integration errors are on the order of a
half percent. We do not include PDF uncertainties. For
W + 1, 2-jet production these uncertainties have been
estimated in ref. [2]. In general they are smaller than
the scale uncertainties at low ET but larger at high ET .
The LO calculation uses the CTEQ6L1 PDF set. For
n = 1, 2 jets, NLO total cross sections agree with those
from MCFM [31], for various cuts. As our calculation is
a parton-level one, we do not apply corrections due to
non-perturbative effects such as induced by the underly-
ing event or hadronization. Such corrections are expected
to be under ten percent [2].

In table I, we collect the results for the total cross
section, comparing CDF data to the NLO theoretical

predictions computed using BlackHat and SHERPA.
The columns labeled “LC NLO” and “NLO” show respec-
tively the results for our leading-color approximation to
NLO, and for the full NLO calculation. The leading-color
NLO and full NLO cross-sections for W + 1- and W + 2-
jet production agree to within three percent. We thus
expect only a small change in the results for W + 3-jet
production once the missing subleading-color contribu-
tions are incorporated.

We have also compared the ET distribution of the nth

jet in CDF data to the NLO predictions for W + 1, 2, 3-
jet production. For W + 2, 3-jets these comparisons are
shown in fig. 2, including scale-dependence bands ob-
tained as described above. For reference, we also show
the LO distributions and corresponding scale-dependence
band. (The calculations matching to parton showers [30]
used in ref. [2] make different choices for the scale varia-
tion and are not directly comparable to the parton-level
predictions shown here.) The NLO predictions match
the data very well, and uniformly in all but the high-
est ET bin. The central values of the LO predictions,
in contrast, have different shapes from the data. The
scale dependence of the NLO predictions is substantially
smaller than that of the LO ones. In the W + 2-jet case,
we also show the ratio of the leading-color approxima-
tion to the full-color result within the NLO calculation:
the two results differ by less than three percent over the
entire transverse energy range, considerably smaller than

Berger et al ’09



Sample distribution: Et,j1 and Et,j2

Hadronic observables:
• scale reduction (factor 4)
• change in shape 
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FIG. 2: The transverse energy distributions of the hardest (left) and second-to-hardest (right) jet in

the W + 3 jet inclusive sample using SIScone jet algorithm. All cuts and parameters are described

in the text. The leading color adjustment is applied. The bands illustrate the scale dependence at

leading (green) and next-to-leading order (red).

somewhat larger corrections to two-quark and four-quark channels. This suggests that the

leading color adjustment procedure that we apply may not be very accurate since small

corrections to the adjustment procedure for two- and four-quark channels separately may

get amplified because of the cancellation. Note however that the systematic and luminosity

errors on the W +3 jet data are currently 25% and 6% respectively, see Eq. (2). Given errors

of this size, the leading color approximation seems sufficient for the foreseeable future.

In Figs. 2,3 we present other kinematic distributions computed through next-to-leading

order. In Fig. 2, the transverse energy distributions of hardest and next-to-hardest jets are

shown. These distributions exhibit a shape change similar to the shape change that we

observed in the transverse momentum distribution of the third hardest jet.

In Fig. 3 the impact of NLO QCD corrections on leptonic observables in the case of

W++ ≥ 3 jet production is shown. In this case significant shape changes in both lepton

rapidity distribution and missing energy distribution do not occur, so simulations based on

leading order matrix elements should give reliable results for the shapes.

Finally, we point out that the discussion in this Section applies to the inclusive W + 3

jets cross-section. In particular, the observation that the choice of renormalization and fac-

torization scale µ = µ0 leads to small corrections applies to that observable. It is interesting
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Plots done by running 4 days (or less) all sub-processes in parallel



Sample distribution: Et,j1 and Et,j2

Leptonic observables:
• scale reduction (factor 4)
• inclusive K-factor works very well
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FIG. 3: The e+ rapidity distribution and the missing energy distribution in the W++ ≥ 3 jet

sample using SIScone jet algorithm. All cuts and parameters are described in the text. The

leading color adjustment is applied. The bands illustrate the scale dependence at leading (green)

and next-to-leading order (red).

to point out that the same scale choice µ = µ0 also works very well for exclusive W + 3 jet

production cross-section. In that case, for µ = µ0, the NLO QCD corrections increase the

leading order result by only about six percent, if jets are defined with SIScone algorithm.

To conclude this Section, we compare our findings with that of Berger et al. [11]. As we

explained in the Introduction, the computation reported in this paper and in Ref. [11] are

not identical so full agreement should not be expected. Nevertheless, the agreement is quite

good. For example the leading color SIScone cross-section σW+≥3j
NLO (E3rd jet

⊥ > 25 GeV) =

0.908+0.044
−0.142 pb was reported [11]. Based on the evidence from W + 1 and W + 2 jets, it was

argued in [11] that their leading color cross-section is within three percent of the full color

result3. This result compares very well with our estimate of the full color result shown in

Eq. (7).

3 This claim is further supported by the preliminary full color NLO QCD cross-section for W + 3 jets
reported in [12].
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LHC cuts

• Jet definition: SIScone with R = 0.5

• PDFs: cteq6l1 and cteq6m

µ0 =
√

p2
⊥,W + M2

W µ = µR = µF = [µ0/2, 2µ0]

ECM = 10TeV E⊥,e = 20 GeV

E⊥,miss = 15GeV M⊥,W = 30 GeV

E⊥,jet = 30 GeV

|ηe| < 2.4 |ηjet| < 3

• Other input parameters as before



LHC:  W+ +3 jet cross-section

• scale dependence considerably reduced at NLO  
• NLO tends to reduce cross-section
• because of very large scale dependence of LO,  quoting a K-factor 

not very meaningful
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Z + 5 jets at e+e-

• ILC need precise predictions for high-multiplicity final states   

• Jet rates measured very accurately already at LEP for up to 6 jets

• One of the most accurate extraction of αs from 4-jet rates. 5-jet 
rates even more sensitive to the coupling but not yet known at NLO

2-jet rate6-jet rate

Aleph, similar plots available from Delphi, Opal, L3 



Z+ 5 jets at e+e-

• Processes e+e- → X + 2 jets can be obtained via a crossing of PP → Z+ X
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qq
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Z+ 5 jets at e+e-

• Processes e+e- → X + 2 jets can be obtained via a crossing of PP → Z+ X

• Z+ X and W + X are very similar, however Z+X at NLO involves new 
diagrams with the Z radiated from a fermion loop
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Z+ 5 jets at e+e-

• Processes e+e- → X + 2 jets can be obtained via a crossing of PP → Z+ X

• Z+ X and W + X are very similar, however Z+X at NLO involves new 
diagrams with the Z radiated from a fermion loop

W+/- γ/ Z

γ/ Z γ/ Z

e-

e+

e+

e-
q

g

g
qq

q

• Final states with additional vector bosons allow measurements of 
anomalous couplings sensitive to generic NP 



Final remarks

✗ simple method, suitable for automation

✗ general Berends-Giele recursion for tree level amplitudes:
   numerically efficient (large N), general (D, spins, masses)

✗ universal method (general masses, spins) and unified approach, 
   no ‘special’ cases, no exceptions 

✗ speed: numerical performance as expected (polynomial)

✗ transparent: full control on all parts

✗ maturity reached for cross-section calculations? Demonstrated by 
explicit calculations of W + 3 jets (but still room for improvements)

In the last (5?) years there has been a breakthrough in NLO techniques. 
Generalized D-dimensional unitarity is one new method: 



Other remarks

✗ for precision comparisons measurements & theory must use the same
   jet-algorithm. Infrared unsafe cones can not be used at NLO and
   should be abandoned in future measurements

✗ despite new advanced techniques full-color calculations are hard. 
   Leading color seems to be an excellent, cheaper approximation   

✗ current work on NLO calculations focuses on LHC processes but

‣ e+e- → X + 2 jets can be obtained via a crossing of PP → Z+ X. 
We are on the process of computing 5 jets final state for the ILC 

‣ techniques developed for the LHC do provide solid ground for 
accurate predictions of generic ILC processes. 


