Using Collider Data to Constrain the Early Universe Properties

Alexandre Arbey

Centre de Recherche Astrophysique de Lyon

in collaboration with Nazila Mahmoudi

LC09 – Perugia September 23, 2009

・ロ・ ・ 四・ ・ 回・ ・ 日・

Outline

Dark Problems

- Dark Matter
- Other questions
- 2

Relic Density

- Overview
- Sensitivity to the Cosmological Model
- Inverse problem
- 3 SuperIso Relic
 - Motivations
 - Status

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

臣

Dark Matter Other questions

Dark Matter Problem

Different scales involved

- Galactic scale
 - Galaxy Rotation Curves
 - Galaxy Collisions
- Cluster Scale
 - X-Ray Observations
 - Weak Lensing
 - Bullet Cluster
- Cosmological Scale
 - Supernovæ of type la
 - Cosmic Microwave Background
 - ...

イロト イヨト イヨト イヨト

Dark Matter Other questions

Dark matter candidates: WIMPs

Weakly Interacting Massive Particles

- No direct detection yet
- Good cosmological behaviour and good galaxy formation
- Clumpiness problems? (clumps formation, cuspy core, ...)

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Dark Matter Other questions

Dark matter candidates: WIMPs

Weakly Interacting Massive Particles

- No direct detection yet
- Good cosmological behaviour and good galaxy formation
- Clumpiness problems? (clumps formation, cuspy core, ...)

Minimal Supersymmetric Standard Model (MSSM)

- Standard Model extension
- Large mass stable particles: cold dark matter
- Not verified yet

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Dark Matter Other questions

Many other cosmological questions

- Inflation
- Particle-Antiparticle Asymmetry
- Leptogenesis
- Baryogenesis
- Nucleosynthesis and ⁷Li
- Dark energy
- ...

・ロ・ ・ 四・ ・ 回・ ・ 回・

E

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density

The recent observations of the WMAP satellite, combined with other cosmological data impose the dark matter density range at 95% C.L.:

 $0.088 < \Omega_{DM} h^2 < 0.123$

(日)

Considering supersymmetry, it is possible to make prediction for the dark matter density, assuming the LSP is the only dark matter component

 \rightarrow relic density, to be compared to the WMAP range

Overview Sensitivity to the Cosmological Model Inverse problem

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: standard calculation

In the Standard Model of Cosmology:

 before and at nucleosynthesis time, the expansion is dominated by radiation

$$H^2 = 8\pi G/3 \times \rho_{\rm rad}$$

 the evolution of the number density of supersymmetric particles follows the Boltzmann equation

$$\frac{dn}{dt} = -3Hn - \langle \sigma_{\text{eff}} v \rangle (n^2 - n_{\text{eq}}^2)$$

n: number density of relic particles.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: standard calculation

Effective invariant annihilation rate W_{eff} :

(ij: coannihilating SUSY particles / kl: SM outgoing particles)

$$\frac{dW_{\rm eff}}{d\cos\theta} = \sum_{ijkl} \frac{p_{ij}p_{kl}}{32\pi p_{\rm eff}S_{kl}\sqrt{s}} \sum_{\rm helicities} \left| \sum_{\rm diagrams} \mathcal{M}(ij \to kl) \right|^2$$

Thermal average of effective cross section:

$$\langle \sigma_{\rm eff} \mathbf{v} \rangle = \frac{\int_0^\infty dp_{\rm eff} p_{\rm eff}^2 W_{\rm eff} K_1\left(\frac{\sqrt{s}}{T}\right)}{m_1^4 T \left[\sum_i \frac{g_i}{g_1} \frac{m_i^2}{m_1^2} K_2\left(\frac{m_i}{T}\right)\right]^2}$$

(K_{1,2}: modified Bessel functions)

・ロ・ ・ 四・ ・ 回・ ・ 日・

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: standard calculation

By comparing the calculated relic density to the cosmological dark matter density, constraints on SUSY parameters can be derived.

Green: area disfavored by BR($B \rightarrow X_s \gamma$) Red: area disfavored by the isospin asymmetry of $B \rightarrow K^* \gamma$ Blue: area <u>favored</u> by WMAP

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: sensitivity to the cosmological model

Caveat!

The cosmological standard model is a simple model, and many unobservable phenomena could have happened during the pre-BBN era.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: influence of a modified expansion rate

For example, the expansion rate can be modified. We can parametrize the modification by adding a new density ρ_D :

 $H^2 = 8\pi G/3 \times (\rho_{rad} + \rho_D)$ with $\rho_D(T) = \rho_D(T_{BBN})(T/T_{BBN})^{n_D}$

- $n_D = 4$: radiation-like behavior
- $n_D = 6$: behavior of a scalar field dominated by its kinetic term

Let's introduce $\kappa_D = \rho_D(T_{BBN})/\rho_{rad}(T_{BBN})$

The modified expansion is in agreement with the observations provided $n_D > 4$ and $\kappa_D < 1$

Such a modification can drastically change the obtained relic density lo

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: influence of a modified expansion rate

Displacement of the WMAP limits in NUHM: Standard model

Large even for a very small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008); Arbey & Mahmoudi, arXiv:0909.0266 [hep-ph] < 🗄 🐇 🧕 😓 🛇 < 🔿

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: influence of a modified expansion rate

Displacement of the WMAP limits in NUHM

Large even for a very small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008); Arbey & Mahmoudi, arXiv:0909.0266 [hep-ph] < 🗄 🐇 🧕 😓 🛇 < 🔿

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: influence of a modified expansion rate

Displacement of the WMAP limits in NUHM

Large even for a very small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008); Arbey & Mahmoudi, arXiv:0909.0266 [hep-ph] < 🗄 🐇 🧕 😓 🛇 < 🔿

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: influence of a modified expansion rate

Displacement of the WMAP limits in NUHM

Large even for a very small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008); Arbey & Mahmoudi, arXiv:0909.0266 [hep-ph] < 🗄 🐇 🧕 😓 🛇 < 🔿

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: influence of a modified expansion rate

Displacement of the WMAP limits in NUHM

Large even for a very small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008); Arbey & Mahmoudi, arXiv:0909.0266 [hep-ph] < 🗄 🐇 🧕 😓 🛇 < 🔿

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: influence of a modified expansion rate

Displacement of the WMAP limits in NUHM

Large even for a very small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008); Arbey & Mahmoudi, arXiv:0909.0266 [hep-ph] < 🗄 🐇 🧕 😓 🛇 < 🔿

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: influence of a modified entropy content

The entropy content of the Universe can also be altered!

 \Rightarrow Modified relation between time, expansion rate and temperature!

Parametrization consists in adding a new entropy density s_D to the total entropy density:

 $s_D(T) = s_D(T_{BBN})(T/T_{BBN})^{n_s}$

• $n_s = 3$: radiation-like behavior

n_s ~ 4: entropy evolution of a decaying scalar field

Let's introduce $\kappa_s = s_D(T_{BBN})/s_{rad}(T_{BBN})$

The modified expansion is in agreement with the observations provided $n_s > 3$ and $\kappa_s < 1$

This modification changes the relic density in the other direction!

A B + A B +

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: influence of a modified entropy content

Displacement of the WMAP limits in NUHM: Standard model

The WMAP constraints can move in any direction!

Arbey & Mahmoudi, arXiv:0906.0368 [hep-ph]; Arbey & Mahmoudi, arXiv:0909.0266 [hep-ph] 😑 🛌 🛬 👘 😒

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: influence of a modified entropy content

Displacement of the WMAP limits in NUHM

The WMAP constraints can move in any direction!

Arbey & Mahmoudi, arXiv:0906.0368 [hep-ph]; Arbey & Mahmoudi, arXiv:0909.0266 [hep-ph] 😑 🥫 🛬

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: influence of a modified entropy content

Displacement of the WMAP limits in NUHM

The WMAP constraints can move in any direction!

Arbey & Mahmoudi, arXiv:0906.0368 [hep-ph]; Arbey & Mahmoudi, arXiv:0909.0266 [hep-ph] 🚊 🛌 🛬 👘 🛬

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: influence of a modified entropy content

Displacement of the WMAP limits in NUHM

The WMAP constraints can move in any direction!

Arbey & Mahmoudi, arXiv:0906.0368 [hep-ph]; Arbey & Mahmoudi, arXiv:0909.0266 [hep-ph] 😑 🥫 🛬

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: influence of a modified entropy content

Displacement of the WMAP limits in NUHM

The WMAP constraints can move in any direction!

Arbey & Mahmoudi, arXiv:0906.0368 [hep-ph]; Arbey & Mahmoudi, arXiv:0909.0266 [hep-ph] 😑 🦻 🛬 👘

Overview Sensitivity to the Cosmological Model Inverse problem

Relic density: sensitivity to the cosmological model

The use of WMAP limits in the context of the relic density is highly questionable!!!

Alexandre Arbey Collider Data and Early Universe

臣

Overview Sensitivity to the Cosmological Model Inverse problem

Inverse problem...

If we know the particle physics scenario, can we deduce the Early Universe properties?

Need to find ways to remove degeneracy...

Arbey & Mahmoudi, arXiv:0909.0266 [hep-ph]

Alexandre Arbey Collider Data and Early Universe

・ロ・・ 日本・ ・ 日本・

Overview Sensitivity to the Cosmological Model Inverse problem

Inverse problem...

BBN constraints on energy and entropy densities

Need to find ways to remove degeneracy... e.g. with BBN...

Arbey & Mahmoudi, arXiv:0909.0266 [hep-ph]

Alexandre Arbey Collider Data and Early Universe

(日)

Motivations Status

Relic density calculation in alternative cosmological models: SuperIso Relic

SuperIso Relic = SuperIso (flavour physics calculations) + relic density calculation

F. Mahmoudi, Comput. Phys. Commun. 180 (2009)

A. Arbey and F. Mahmoudi, arXiv:0906.0369 [hep-ph]

Concept of the code

- Automatized computation of flavour observables and relic density in SUSY
- Flexible particle physics model implementation (mSUGRA, NUHM, AMSB, ...)
- Flexible cosmological model implementation (dark energy, reheating, ...)
- Publicly available on http://superiso.in2p3.fr/relic

Motivations Status

SuperIso Relic

Structure of the code

- Generation of a SLHA file with Isajet or Softsusy
- Initialization of the variables using the SLHA file
- Generation of additional Higgs sector variables with FeynHiggs
- Calculation of W_{eff} with Fortran functions
- Calculation of $\langle \sigma_{\rm eff} v \rangle$ with C functions
- Solving of the Boltzmann equation with C functions
- Computation of the other SuperIso observables

Arbey & Mahmoudi, arXiv:0906.0369 [hep-ph]

Motivations Status

SuperIso Relic

Fortran and diagram generation

- Analytical calculation of the amplitudes with Mathematica / FeynArts / FormCalc / FORM
- FormCalc-generated Fortran code interfaced with the SuperIso C-functions
- Use of LoopTools (if needed) to compute loop amplitudes
- Possibility to use of FeynArts model file generators (FeynRules, LanHEP, ...)

Arbey & Mahmoudi, arXiv:0906.0369 [hep-ph]

Motivations Status

SuperIso Relic

Status

- Calculation of amplitudes within MSSM with MFV at tree level fully implemented (more than 3000 processes involved)
- Good agreement with Micromegas and DarkSusy
- Publicly available in two versions:
 - a statically linked version, fast at execution, but requiring the compilation of all the processes before the first run (around 1-2 hours) → advised for intensive use.
 - a version with shared libraries, which compiles the processes "on the fly", slower at execution, but faster at compilation → advised for a quick start.
- Well tested under Linux machines with GNU and Intel compilers
- Package including LoopTools v2.4 and FeynHiggs v2.6.5.

Motivations Status

SuperIso Relic

Good agreement with DarkSusy!

臣

Motivations Status

SuperIso Relic

Status: Alternative cosmological models

- Relic density within the cosmological standard model fully implemented
- Possible to use different QCD equation of state for radiation
- Possible to modify the expansion of the early Universe through the presence of an effective dark density

$$\rho_D(T) = \rho_D^0 T^{n_\rho}$$

 Possible to modify the thermal properties of the Universe through the presence of an effective dark entropy

$$s_D(T) = s_D^0 T^{n_s}$$

・ロ・・ (日・・ (日・・ 日・)

크

Conclusion and perspectives

Inverse problem?

- dangerous to use the relic density to constrain SUSY!
- dangerous to combine collider data and relic density to determine a new particle physics model!

Inverted problem?

- possible to use the collider data and the relic density to constrain Cosmology!
- possible to combine collider data and the relic density to determine the early universe physics!

SuperIso Relic: perspectives

- Addition of BBN constraints on the cosmological models
- Extension to more cosmological scenarios
- Extension to more particle physics models