Collider phenomenology with CalcHEP

Alexander Belyaev

Southampton University & Rutherford Appleton LAB

LC09

e+e- Physics at the TeV Scale and the Dark Matter Connection

Perugia, Italy, 21-24 September, 2009

Alexander Belyaev

"Collider phenomenology with CalcHEP"

location of this talk

http://www.hep.phys.soton.ac.uk/~belyaev/proj/talks/lc09_belyaev.pdf

- Introduction to CalcHEP
 - models and symbolic session
 - numerical session and kinematical distributions
 - event generation
- Automatized Introduction of new models with LanHEP
- CalcHEP batch Interface and link to beyond the parton level MC generators
- Application of CalcHEP for SM and BSM at LHC/LC

Practical points

- The WEB page of CalcHEP http://theory.npi.msu.su/~pukhov/calchep.html
- e-mail for your questions/requests/remarks calchep@googlegroups.com , a.belyaev@soton.ac.uk
- exercises

for those who wants to practice and start using CalcHEP rightaway

Introduction to CalcHEP

Author(s)

Alexander Pukhov

(AB and Neil Christensen have joined the project in 2009)

- Idea
 - The effective study of HEP phenomenology passing at high level of automation from your favorite model to physical observables such as decay width, branching ratios, cross sections kinematic distributions, ...

Introduction to CalcHEP

Author(s)

Alexander Pukhov

(AB and Neil Christensen have joined the project in 2009)

- Idea
 - The effective study of HEP phenomenology passing at high level of automation from your favorite model to physical observables such as decay width, branching ratios, cross sections kinematic distributions, ...
- Analogous packages (matrix element generators) http://www.ippp.dur.ac.uk/montecarlo/BSM/ http://www-theory.lbl.gov/tools/
 - CompHEP (Boos et al)
 - MadGraph/MadEvent (Maltoni, Stelzer)
 - Grace/Helas (Fujimoto et al)
 - FeynArts/FeynCalc/FormCalc (Hahn et al)
 - WHIZARD,O'mega (Moretti, Ohl, Reuter)
 - Sherpa (Krauss et al)

 Can evaluate any decay and scattering processes within any (user defined) model!

- Can evaluate any decay and scattering processes within any (user defined) model!
- Tree-level processes

- Can evaluate any decay and scattering processes within any (user defined) model!
- Tree-level processes
- Squared Matrix Element calculation
 - no spin information for outgoing particles spin averaged amplitude

- Can evaluate any decay and scattering processes within any (user defined) model!
- Tree-level processes
- Squared Matrix Element calculation
 - no spin information for outgoing particles spin averaged amplitude
- Limit on number of external legs (involved particles) and number of diagrams
 - official limit 8, unofficial none
 - Imit is set from the practical point of view:
 - 2 \rightarrow 6 (1 \rightarrow 7) set the essential time/memory limit
 - number of diagrams ~ 500 set the disk space and the time limit

Quick start with CalcHEP

practical notes on the installation: download code, read manual, compile http://theory.npi.msu.su/~pukhov/calchep.html

CalcHEP - a package for calculation of Feynman diagrams and integration over multi-particle phase space.

Authors - Alexander Pukhov, Alexander Belyaev, Neil Christensen

The main idea in CalcHEP was to enable one to go directly from the Lagrangian to the cross sections and distributions effectively, with the high level of automation. The package can be compiled on any Unix platform.

General information Main facilities . Old Versions . Acknowledgments News&Bugs Manual calchep man 2.3.5(ps.gz) (137 pages, 445KB, March 18, 2005) HEP computer tools (Lecture by Alexander Belyaev) See also: Dan Green, High Pt physics at hadron colliders (Cambride University Press) Codes download. ● <u>Licence</u> ● <u>Installation</u> ● <u>References</u> Contributions CalcHEP code for UNIX: version 2.5.4 (July 12, 2009) version 2.6.a (version under development) Models: MSSM(04.08.2006) NMSSM CPVMSSM(04.08.2006) LeptoQuarks Universal Extra Dimension Models: <a>SDSM 6DSM SUSY models for CompHEP By A.Semenov Relative packages on Web: Packages for model generation:
 LanHEP
 FeynRules RGE and spectrum calculation: SuSpect Sister SoftSUSY Sphene CPsuperH MMHDecay Particle widths in MSSM: SDECAY HDECAY Parton showers: • PYTHIA calchep@googlegroups.com Email contact:

"Collider phenomenology with CalcHEP"

Alexander Belyaev

NE

Quick start with CalcHEP: practical notes on the installation

- Download code, read manual and compile http://theory.npi.msu.su/~pukhov/calchep.html
 - tar -zxvf calchep_2.x.x.tgz
 - cd calchep_2.x.x
 - make

the currrent version is 2.*x.x* = 2.5.4

- Create work directory
 - From calchep_2.x.x directory:
 - ./mkUsrDir ../calc_work
- Supported operating system
 - Linux, IRIX, IRIX64, HP-UX, OSF1, SunOS, Darwin, CYGWIN (see getFlags file)

Exercise#1: Install CalcHEP

Starting CalcHEP

• cd ../calc_work

 Files: bin -> /calchep_2.x.x/bin calchep calchep_batch calchep.ini models/ results/ tmp/

Start: ./calchep

Starting CalcHEP

≻ ··· CalcHEP/symb

 \odot \land \times

CalcHEP - a package for Calculation in High Energy Physics Version 2.5.4: Last correction July 12,2009

Main author: Alexander Pukhov(Skobeltsyn Institute of Nuclear Physics, Moscow) Batch mode : Neil Chistensen (Michigan State University) PYTHIA interface and testing:Alexander Belyaev(University of Southampton)

For contacts:

email: <pukhov@lapp.in2p3.fr>
http://theory.sinp.msu.ru/~pukhov/calchep.html

The BSMs for CalcHEP were developed in collaboration with: G.Belanger, A.Belyaev, F.Boudjema, A.Semenov

The package contains codes written by: M.Donckt, V.Edneral, V.Ilyin, D.Kovalenko, A.Kryukov, G.Lepage, A.Semenov

Press F9 or click the box below to get

References and Contributions

This information is available during the session by means of the F9 key

Starting CalcHEP

F1-Help F2-Man F5-Switches F6-Results F9-Ref F10-Quit

CalcHEP menu structure: symbolic part

Alexander Belyaev

Model: prtclxx.mdl

Clr-Del-Size	-Read	I-Err	Mes							
Full name	IA	IA+	l number	12*sp	oinl mass	lwidth	l lcol	orlau	xl>LaTex(A)	<l>LaTeX(A+) <</l>
gluon	IG	IG	121	12	10	10	18	IG	lg	lg
photon	IA	IA	122	12	10	10	11	IG	l\gamma	l\gamma
Z-boson	1Z	1Z	123	12	IMZ	lωZ	11	IG	IZ	IZ
l-boson	W+	1W-	124	12	I MW	l wM	11	IG	1W^+	IW^-
liggs	lh	lh	125	10	IMh	l!wh	11	1	lh	lh
electron	le	IE	111	11	10	10	11	1	le^-	le^+
e-neutrino	Ine	INe	112	11	10	10	11	IL	l \nu_e	l\bar{\nu}_e
nuon	l m	IM	113	11	l Mm	10	11	1	1\mu^-	\mu^+
n-neutrino	lnm	I Nm	114	11	10	10	11	IL	l\nu_\mu	l\bar{\nu}_\mu
tau-lepton	11	1L	115	11	IM1	10	11	1	\tau^-	\tau^-
t-neutrino	Inl	IN1	116	11	10	10	11	IL	\nu_\tau	\bar{\nu}_\tau
d-quark	ld	ID	11	11	10	10	13	1	ld	l\bar{d}
u-quark	lu	10	12	11	10	10	13	1	lu	l\bar{u}
s-quark	ls	15	13	11	lMs	10	13	t	ls	l\bar{s}
c-quark	lc	10	14	11	1Mc	10	13	1	lc	l\bar{c}
o-quark	lb	IB	15	11	1 Mb	10	13	Ť.	lb	\bar{b}
t-quark	lt	1T	16	11	lMt	lwt	13	- ji	lt	$l \in \{t\}$

Model: prtclxx.mdl

🖂 🕙 CalcHEP/sym	ıb									2 8
			Repair - 111		Partic	cles				
Clr-Del-Size-	Read	l-Err	-Mes			and the second second				
Full name	IA	IA+	l number	12*sp	inl mass	lwidth	n Icol	orlau	xl>LaTex(A)	<l>LaTeX(A+) <</l>
gluon	IG	IG	121	12	10	10	18	IG	lg	lg
photon	IA	IA	122	12	10	10	11	IG	l\gamma	l\gamma
Z-boson	ΙZ	ΙZ	123	12	IMZ	lωZ	11	IG	IZ	IZ
W-boson	W+	1W-	124	12	I MW	l whi	11	IG	W^+	IW^-
Higgs	Ιh	lh	125	10	1Mh	!wh	11	1	lh	lh
electron	le	IE	111	11	10	10	11	1.	le^-	le^+
e-neutrino	Ine	INe	112	11	10	10	11	IL	l \nu_e	l\bar{\nu}_e
muon	l m	IM	113	11	l Mm	10	11	i.	\mu^-	l\mu^+
m-neutrino	lnm	l Nm	114	11	10	10	11	IL	l\nu_\mu	\bar{\nu}_\mu
tau-lepton	11	1L	115	11	IM1	10	11	1	\tau^-	\tau^-
t-neutrino	lnl	IN1	116	11	10	10	11	1L	l\nu_\tau	\bar{\nu}_\tau
d-quark	١d	ID	11	11	10	10	13	1	ld	\bar{d}
u-quark	lu	10	12	11	10	10	13		lu	l\bar{u}
s-quark	ls	15	13	11	lMs	10	13	1	ls	\bar{s}
c-quark	lc	10	14	11	1Mc	10	13		lc	\bar{c}
b-quark	lb	IB	15	11	1 Mb	10	13	j.	lb	\bar{b}
t-quark	lt	IT	16	11	IMt	lwt	13	7	lt	\bar{t}
			ſ	Lline	ha haaa			l ha		L'on the flui
			12.14.2.3.4	ΠIQ	15 00501			i be (calculated	on the fly
F1-F2-Xgoto-	Ygota	o−Fir	nd-Write-							
		Contra la								

Model: varsxx.mdl

🖂 🕑 Cale	:HEP/symb	
W		Parameters 1
_C Clr-Del	L—Size—Read—Eri	Mes
Name	Value	I> Comment
alfEM	10.0078180608	IMS-BAR electromagnetic alpha(MZ)
alfSM	210.1172	ISrtong alpha(MZ) for running mass calculation
Q	1100	Iscale for running mass calculation
GG	11.238	IRunning Strong coupling. The given value doesn't matter.
SW	10.481	IMS-BAR sine of the electroweak mixing angle
s12	10.221	IParameter of C-K-M matrix (PDG96)
s23	10.041	IParameter of C-K-M matrix (PDG96)
s13	10.0035	IParameter of C-K-M matrix (PDG96)
Mm	10.1057	Imuon mass
Ml	11.777	Itau-lepton mass
McMc	11.2	IMc(Mc)
Ms	10	ls-quark mass (pole mass, PDG96)
MbMb	14.25	IMb(Mb)
Mtp	1175	lt-quark pole mass
MZ	191.187	IZ-boson mass
Mh	1120	lhiggs mass
ωt	11.59	lt-quark width (tree level 1->2x)
ωZ	12.49444	IZ-boson width (tree level 1->2x)
wW	12.08895	IW-boson width (tree level 1->2x)

F1-F2-Xgoto-Ygoto-Find-Write-

Model: funcxx.mdl

🖂 🕙 Cal	cHEP/symb			×
	Constraints	B)	£	
_[Clr_De	L-Size-Read-ErrMes			
Name	I> Expression	<		
EE	lsqrt(16*atan(1.)*alfEMZ)	% electromagnetic constant	8 	
CW	lsqrt(1-SW^ 2)	% cos of the Weinberg angle		
MW	IMZ*CW	%W-boson mass	8	
c12	lsqrt(1-s12^ 2)	% parameter of C-K-M matrix		
c23	lsqrt(1-s23^ 2)	% parameter of C-K-M matrix		
c13	lsqrt(1-s13^ 2)	% parameter of C-K-M matrix		
Yud	lc12*c13	% C-K-M matrix element		
Yus	ls12*c13	% C-K-M matrix element		
Yub	ls13	% C-K-M matrix element		
Vcd	l-s12*c23-c12*s23*s13	% C-K-M matrix element		
Vcs	lc12*c23-s12*s23*s13	% C-K-M matrix element		
Vcb	ls23*c13	% C-K-M matrix element		
Vtd	ls12*s23-c12*c23*s13	% C-K-M matrix element		
Vts	l-c12*s23-s12*c23*s13	% C-K-M matrix element		
Vtb	lc23*c13	% C-K-M matrix element		
qcd0k	<pre>linitQCD(alfSMZ,McMc,MbMb,Mtp)</pre>			
Mb	IMbEff(Q)*one(qcd0k)			
Mt	IMtEff(Q)*one(qcd0k)			
Mc	IMcEff(Q)*one(qcd0k)			
LF1-F2-X	Kgoto-Ygoto-Find-Write			

Model: lgrngxx.mdl

ying 🕑	CalcHEP/	symb				×
			an ann an An		Vertices	
_C Clr-	-Del-Si	.ze-Rea	d–ErrM	les		
A1	162	I A3	164	I> Factor	<l> Lorentz part</l>	
h	IZ	IZ	1	IEE/(SW*CW^ 2)*MW	lm2.m3	
h	lh	1h	i.	1-(3/2)*EE*Mh^ 2/(MW*SW)	11	
h	lh	- Lh	lh	(-3/4)*(EE*Mh/(MW*SW))^ 2	11	
h	lh	1Z	1Z	(1/2)*(EE/(SW*CW))^ 2	lm3.m4	
h	lh	I W+	1W-	l (1/2)*(EE/SW)^ 2	lm3.m4	
M	l m	lh	į.	I-EE*Mm/(2*MW*SW)	11	
L.	11	Ιh	1	I-EE*M1 /(2*MW*SW)	11	
C	lc	lh	ţ.	I-EE*Mc/(2*MW*SW)	11	
S	ls	Ιh	ļ	l-EE*Ms/(2*MW*SW)	11	
B	lb	lh	ţ.	I-EE*Mb/(2*MW*SW)	11	
T	lt	lh	J.	I-EE*Mt /(2*MW*SW)	11	
E	le	IA	ţ.	I -EE	1G(m3)	
M	l m	IA	l	I-EE	1G(m3)	
L	11	IA	Į.	I-EE	lG(m3)	
Ne	le	W+	1	IEE/(2*Sqrt2*SW)	lG(m3)*(1-G5)	
Nm	l m	1 W+	ļ.	IEE/(2*Sqrt2*SW)	G(m3)*(1-G5)	
N1	11	1 M+		IEE/(2*Sqrt2*SW)	G(m3)*(1-G5)	
E	Ine	1 W -	ļ.	IEE/(2*Sqrt2*SW)	G(m3)*(1-G5)	
M	lnm	IM-		IEE/(2*Sqrt2*SW)	G(m3)*(1-G5)	
	Inl	i W	ļ,	IEE/(2*Sqrt2*SW)	G(m3)*(1-G5)	
E	le	IZ	1	I-EE/(4*SW*CW)	G(m3)*(1-G5)-4*(SW^ 2)*G(m3)	
M	l m	IZ	ļ.	I-EE/(4*SW*CW)	G(m3)*(1-G5)-4*(SW^ 2)*G(m3)	
Ļ	11	IZ		I-EE/(4*SW*CW)	$IG(m3)*(1-G5)-4*(SW^{2})*G(m3)$	
Ne	Ine	IZ	1000	IEE/(4*SW*CW)	lG(m3)*(1-G5)	
LF1_F	-2-Xgot	.o-Ygot	.o-Finc	-Write		

Model: extlibxx.mdl

CalcHEP/symb	D	•	×
Libraries			
Clr-Del-Size-Read-ErrMes-			
External libraries and citation	2		
<pre>\$CALCHEP/lib/model_aux.a</pre>			
% To switch on CERN PDFLIB uncomment the line below,			
% improving path to CERNLIB if it needs	11		
% -L/cern/pro/lib -lpdflib804 -lmathlib -lpacklib \$lFort			
	-13		15

Details of symbolic session

- The syntax for the input is: P1[,P2] -> P3,P4, [,...,[N*x]]
 'P1',..., 'P4' are particle names, 'N' is the number of particles
- Polarization for massless particles: P1%, P2% -> P3,P4, ...
- hadron/composite particle scattering
 'p,p->W+,b,B'
 unknown particle are assumed to be composite:

'p' consists of u,U,d,D,s,S,c,C,b,B,G

- wild cards/names for outgoing particles 'H -> 2*x'
- intermediate particles can be non-trivially excluded
 'W+ > 2, A>1, Z>3'
- particle width can be calculated 'on-fly' '!wtop', i.e. '!' symbol should be used in the prt table
- particles spin

Alexander Belyaev

0, 1/2, 1, 3/2, 2 0, 1, 2, 3, 4

Exercise#2

calculate SM Higgs boson Decay width and branching ratios as a function of Higgs boson mass

Principle KEYS for CalcHEP's GUI

Enter menu selection (forward) Exit menu selection (back) Help! (details on the menu choice)

List of part	ticles (antiparticles)	
G(G)- gluon	A(A)- photon	Z(Z)- Z-boson
W+(W-)- W-boson	h(h)- Higgs	e(E)- electron
ne(Ne)- e-neutrino	m(M)-muon	nm(Nm)- m-neutrino
l(L)- tau-lepton	nl(Nl)- t-neutrino	d(D)- d-quark
u(U)- u-quark	s(S)- s-quark	c(C)- c-quark
b(B)- b-quark	t(T)- t-quark	
nter process: <mark>p,p -> ₩</mark> , omposit 'p' consists of	.b.B u.U.d.D.s.S.c.C.b.B.G	
nter process: <mark>p.p -> W</mark> omposit 'p' consists of omposit 'W' consists of	.b,B : u,U,d,D,s,S,c,C,b,B,G : W+,W-	
nter process: <mark>p,p -> W</mark> omposit 'p' consists of omposit 'W' consists of «clude diagrams with	.b,B : u,U,d,D,s,S,c,C,b,B,G : W+,W-	
nter process: <mark>p,p -> W</mark> omposit 'p' consists of omposit 'W' consists of xclude diagrams with	.b.B u,U,d,D,s,S,c,C,b,B,G ₩+,W-	
nter process: <mark>p,p -> W</mark> omposit 'p' consists of omposit 'W' consists of cclude diagrams with	.b.B : u.U.d.D.s.S.c.C.b.B.G : W+.W-	
nter process: <mark>p.p -> W</mark> omposit 'p' consists of omposit 'W' consists of cclude diagrams with	.b.B ■ u.U.d.D.s.S.c.C.b.B.G ■ W+.W-	

Alexander Belyaev

ۍ پېر	CalcHEP/symb			6		×
	Model:	Standard Model				
	Process:	p,p -> ₩,b,B	-			
472	diagrams	Feynman diagrams in 24 subprocesses are constructed.	View d	iagrams		
v	dragrams	are defeted.				
	NN	Subprocess	Del	Rest		
		u,D -> W+,b,B	ĩ	01 15	1	
	21	u,S -> W+,b,B	<u>ni</u>	01 16		
	31	u.B -> W+.b.B	1	01 26		
	41	U.d -> W-,b,B		01 15		
	51	U.s -> Nb.B		01 16		
	61	U,b -> W-,b,B		01 26		
	71	d.U -> Wb.B		01 15		
	81	d,C → W-,b,B		01 16		
	91	D.u -> W+.b.B	10	01 15		
	101	$D,c \rightarrow W+,b,B$	jii .	01 16		
	111	s,U -> W-,b,B	10	01 16		
				PgDr	1	
F1-	Help F2-Man	n F3-Model F5-Switches F6-Results F7-Del	F8-UnDel	F9-Ref F	10-00	uit

Alexander Belyaev

	170	-	-						
CalcHEP/	/symb							•	
Mode	el:	Standard Model							
'roces	SS	p,p -> ₩,b,B							
		F 10							
di an		reynman diagrams	a apportanted	¥1	ew squ	arec	diagrams		
diagr	rams	in 24 supprocesses an	e constructed.						
aragi	1.9111.2	ale deleted.							
		Squared diagrams							
diagr	rams	in 24 subprocesses an	re constructed.						
diagr	rams	are deleted.							
diagr	rams	are calculated.							
NN N	Su	bprocess		Del	Calc	Re	st		
States -	-00	Alterna na se		38%	S8.07	2820	1		
11	u,D-	>W+,b,B		1	01	01	120		
21	u,\$-	>W+.b.B		Щ.	01	01	136		
31	u,B-	>W+,b,B			01	01	351		
41	U, d-	>W-,b,B		ų.	01	01	120		
51	U.s-	>W-,b,B			01	01	136		
bl	0,b-	>W-,b,B			01	01	351		
/	d.U-	>W-,b,B			01	01	120		
81	d,U-	>W-,b,B			01	01	136		
91	D,u-	>W+,b,B		tiont	01	01	120		
61 71 81 91	U,b- d,U- d,C- D,u-	>W-,b,B >W-,b,B >W-,b,B >W+,b,B		Î Î Î	01 01 01 01	01 01 01 01	351 120 136 120 		

F1-Help F2-Man F3-Model F4-Diagrams F5-Switches F6-Results F9-Ref F10-Quit

Alexander Belyaev

Alexander Belyaev

"Collider phenomenology with CalcHEP"

CalcHE	P/symb			$\mathbf{\hat{\mathbf{v}}}$
Mo	del:	Standard Model		
Proc	ess:	p,p -> ₩,b,B		k
2 dia dia 208 dia dia dia	grams grams grams grams grams	Feynman diagrams in 24 subprocesses are deleted. Squared diagrams in 24 subprocesses are deleted. are calculated.	are constructed. are constructed.	View squared diagrams Symbolic calculations Make&Launch n_calchep Make n_calchep REDUCE program
	E0. 1			

Net Op	CalcHERIeumh		0.0	Ŷ
~ 0	Model:	Standard Model	00	0
	Process:	p.p -> W.b.B		
472 0	diagrams diagrams	Feynman diagrams in 24 subprocesses are constructed. are deleted.		
5208 0 5208	diagrams diagrams diagrams	Squared diagrams in 24 subprocesses are constructed. are deleted. are calculated.		
0	Out of me	emory		
F	1-Help F2-I	1an F3-Model F4-Diagrams F5-Switches F6-Results F9-Ref F10-Quit		

Alexander Belyaev

x 📀	CalcHEP/symb			
	Model:	Standard Model		
	Process:	p,p -> ₩,b,B		
72	diagrams diagrams	Feynman diagrams in 24 subprocesses are deleted.	are constructed.	C code C-compiler Edit Linker REDUCE code
208	diagrams diagrams	Squared diagrams in 24 subprocesses are deleted.	are constructed.	MATHEMATICA code FORM code Enter new process
208	diagrams Out of me	are calculated. emory		

F1-Help F2-Man F3-Model F4-Diagrams F5-Switches F6-Results F9-Ref F10-Quit

Numerical part of CalcHEP

🖂 🕑 CalcHEP/num

(sub)Process: u, D -> W+, b, B
Monte Carlo session: 2(continue)

Subprocess

IN state Model parameters Constraints QCD coupling Breit-Wigner Cuts Phase space mapping Vegas Generate events

V A

X

F1-Help F2-Man F6-Results F8-Calc F9-Ref F10-Quit

Alexander Belyaev

subprocess menu

control of the initial states and PDFs: LHC case

Alexander Belyaev

control of the initial states and PDFs: ILC case

model parameters

dependent parameters

NE

"Collider phenomenology with CalcHEP"

QCD coupling and the scale

setting kinematical cuts

setting kinematical cuts

Subprocess IN state Model parameters Constraints QCD coupling Breit-Wigner

Cuts

Phase space mapping Vegas Generate events

setting kinematical cuts

Subprocess IN state Model parameters Constraints QCD coupling Breit-Wigner

Cuts

Phase space mapping Vegas Generate events

Cuts	5
-Read-ErrMes-	
<pre>I> Min bound</pre>	<i>> Max bound <</i>
120	e centra resemblementerismenterisme es
120	ľ
I-5	15
1-5	15
10.5	l 📗
	Cuts -Read-ErrMes > Min bound 20 20 -5 -5 0.5

integration over the phase space

Subprocess IN state Model parameters Constraints QCD coupling Breit-Wigner Cuts Phase space mapping Vegas Generate events $(sub)Process: u. D \rightarrow W+. b. B$ Monte Carlo session: 2(continue) Cross section [pb] Error % #IT 6 9.5931E+00 7.10E-01 7 9.5686E+00 6.79E-01 8 9.5669E+00 6.82E-01 9 7.93E-01 9.6892E+00 10 7.51E-01 9.6267E+00 7.32E-01 1 9.7757E+00 clear statistics. 2 9.6557E+00 6.82E-01 3 9.7464E+00 1.38E+00 4 9.6945E+00 1.05E+00 5 9.7032E+00 7.68E-01 > 3.74E-01 9.7095E+00

Resulting M_{bb} kinematical distribution

Resulting M_{wb} kinematical distribution

Resulting M_{wb} kinematical distribution

generation of events

Useful scripts

GUI gives user a full control of details of symbolic/numerical session. Is there automation of calculation involving many sub-processes?

- cycle over subprocesses
 - exit from the numerical session
 - cd results
 - ../bin/subproc_cycle *lumi nmax*

requires 2 parameters:

1. luminosity

2. max number of events per process

e.g.

../bin/subproc_cycle 1000 100000

running subproc_cycle for SM model

/bin/subpr	coc_cycle 0 0
#Subprocess	1 (u, D -> W+, b, B) Cross section = 9.6364E+00 , 0 events
#Subprocess	2 (u, S -> W+, b, B) Cross section = 4.0808E-01 , 0 events
#Subprocess	3 (u, B -> W+, b, B) Cross section = 2.3490E-04 , 0 events
#Subprocess	4 (U, d -> W-, b, B) Cross section = 5.7795E+00 , 0 events
#Subprocess	5 (U, s -> W-, b, B) Cross section = 1.0253E-01 , 0 events
#Subprocess	6 (U, b -> W-, b, B) Cross section = 4.3181E-05 , 0 events
#Subprocess	7 (d, U -> W-, b, B) Cross section = 5.8270E+00 , 0 events
#Subprocess	8 (d, C -> W-, b, B) Cross section = 2.1421E-01 , 0 events
#Subprocess	9 (D, u -> W+, b, B) Cross section = 9.5470E+00 , 0 events
#Subprocess	10 (D, c -> W+, b, B) Cross section = 9.1056E-02 , 0 events
#Subprocess	11 (s, U -> W-, b, B) Cross section = 1.0383E-01 , 0 events
#Subprocess	12 (s, C -> W-, b, B) Cross section = 1.2694E+00 , 0 events
#Subprocess	13 (S, u -> W+, b, B) Cross section = 4.1026E-01 , 0 events
#Subprocess	14 (S, $c \rightarrow W+$, b, B) Cross section = 1.2333E+00 , 0 events
#Subprocess	15 (c, D -> W+, b, B) Cross section = 9.3773E-02 , 0 events
#Subprocess	16 (c, S -> W+, b, B) Cross section = 1.2480E+00 , 0 events
#Subprocess	17 (c, B -> W+, b, B) Cross section = 3.4475E-03 , 0 events
#Subprocess	18 (C, d -> W-, b, B) Cross section = 2.1469E-01 , 0 events
#Subprocess	19 (C, s -> W-, b, B) Cross section = 1.2651E+00 , 0 events
#Subprocess	20 (C, b -> W-, b, B) Cross section = 3.4542E-03 , 0 events
#Subprocess	21 (b, U -> W-, b, B) Cross section = 4.3722E-05 , 0 events
#Subprocess	22 (b, C -> W-, b, B) Cross section = 3.3992E-03 , 0 events
#Subprocess	23 (B, u -> W+, b, B) Cross section = 2.3111E-04 , 0 events
#Subprocess	24 (B, c -> W+, b, B) Cross section = 3.4543E-03 , 0 events
Sum of distr	cibutions is stored in file distr_7_30
Total Cross	Section 37.45843711 [pb]
see details	in prt_7 - prt_30 files

Accessing your results

- results are stored in "results" directory
- output files:

•

- n_calchep numerical module
- prt_nn protocol
- distr_nn_mm summed distributions
- distr_nn
- events_nn.txt events file
- list_prc.txt
 list of processes
- qnumbers
- qnumbers PYTHIA input with new prt definitions
- session.dat current session status format is similar to prt_nn one
- for every new process the "results" directory is offered to be renamed or removed

individual distribution

protocol prt_nn

```
CalcHEP kinematics module
The session parameters:
\#Subprocess 1 ( u, D -> W+, b, B )
#Session number 1
#Initial state inP1=7.000000E+03 inP2=7.000000E+03
Polarizations= { 0.000000E+00 0.00000E+00 }
 StrFun1="PDT:cteq6m(proton)" 2212
 StrFun2="PDT:cteq6m(proton)" 2212
#Physical Parameters
   alfEMZ = 7.8180609999999999E-03
   alfSMZ = 1.17200000000000E-01
#Cuts
*** Table ***
Cuts
 Parameter |> Min bound <|> Max bound <|
T(b)
            120
T(B)
            120
#Regularization
*** Table ***
Regularization
            |> Mass <|> Width <| Power|
Momentum
45
                                2
            | MZ
                      WZ
                                2
45
            | Mh
                      wh
#END
Cross section [pb] Error % nCall
                                           chi**2
#IT
 1
      2.0373E+00
                        3.30E+01 20000
 2
        8.6164E+00
                         2.86E+01
                                    20000
```

Alexander Belyaev

Introduction to LanHEP package

Andrei Semenov: V3.0, arXiv:0805.0555 http://theory.sinp.msu.ru/~semenov/lanhep.html This is the program for Feynman rules generation in momentum space QCD as an example

• QCD as an example Gauge term $L_{YM} = -\frac{1}{4}F^{a\mu\nu}F^a_{\mu\nu}, \quad F^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu - g_s f^{abc}G^b_\mu G^c_\nu$ Quark kinetic term $L_F = \bar{q}_i \gamma^\mu \partial_\mu q_i + g_s \lambda^a_{ij} \bar{q}_i \gamma^\mu q_j G^c_\mu$, GF term and FP ghost term $\mathcal{L}_{GF} = -\frac{1}{2}(\partial_\mu G^\mu_a)^2 + ig_s f^{abc} \bar{c}^a G^b_\mu \partial^\mu c^c$,

Introduction to LanHEP package

Andrei Semenov: V3.0, arXiv:0805.0555 http://theory.sinp.msu.ru/~semenov/lanhep.html This is the program for Feynman rules generation in momentum space QCD as an example

• QCD as an example Gauge term $L_{YM} = -\frac{1}{4}F^{a\mu\nu}F^a_{\mu\nu}, \quad F^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu - g_s f^{abc}G^b_\mu G^c_\nu$ Quark kinetic term $L_F = \bar{q}_i \gamma^\mu \partial_\mu q_i + g_s \lambda^a_{ij} \bar{q}_i \gamma^\mu q_j G^c_\mu,$ GF term and FP ghost term $\mathcal{L}_{GF} = -\frac{1}{2}(\partial_\mu G^\mu_a)^2 + ig_s f^{abc} \bar{c}^a G^b_\mu \partial^\mu c^c,$

QCD Feynman rules generated by LanHEP in LaTeX format

Fields in the vertex		tex	Variational derivative of Lagrangian by fields			
$G_{\mu p}$	$G.C_q$	$G.c_r$		$-gg\cdot p_3^\mu f_{pqr}$		
Q_{ap}	q_{bq}	$G_{\mu r}$		$gg\cdot\gamma^{\mu}_{ab}\lambda^{r}_{pq}$		
$G_{\mu p}$	$G_{\nu q}$	$G_{ ho r}$		$ggf_{pqr}(p_3^{\nu}g^{\mu\rho} - p_2^{\rho}g^{\mu\nu} - p_3^{\mu}g^{\nu\rho} + p_1^{\rho}g^{\mu\nu} + p_2^{\mu}g^{\nu\rho} - p_1^{\nu}g^{\mu\rho})$		
$G_{\mu p}$	$G_{ u q}$	$G_{ ho r}$	$G_{\sigma s}$	$gg^2(g^{\mu\rho}g^{\nu\sigma}f_{pqt}f_{rst} - g^{\mu\sigma}g^{\nu\rho}f_{pqt}f_{rst} + g^{\mu\nu}g^{\rho\sigma}f_{prt}f_{qst}$		
			;	$+g^{\mu\nu}g^{\rho\sigma}f_{pst}f_{qrt} - g^{\mu\sigma}g^{\nu\rho}f_{prt}f_{qst} - g^{\mu\rho}g^{\nu\sigma}f_{pst}f_{qrt})$		

Features of LanHEP

- it reads Lagrangian written in the form close to one used in publications and transforms it into momenta space
- it writes Feynman rules in the form of four tables in CompHEP format as well as tables in LaTeX format
- LanHEP expands expression and combines similar terms user can define the substitution rules, it allows to define multiplets, and their components
- it can check whether the set of introduced vertices satisfies the electric charge conservation law
- many more features: see manual(!) using superpotential formalism, check for BRST invariance, two-component notation for fermions, ...

LanHEP installation

http://theory.sinp.msu.ru/~semenov/lanhep.html tar -zxvf lhepxxx.tar.gz cd lhepxxx make

make clean

Exercise#4 install LanHEP

Running LanHEP

../lhep stand.mdl

File sm_tex processed, 0 sec. File stand.mdl processed, 1 sec.

Using the superpotential formalism in the MSSM and its extensions

- Superpotential a polynomial W depending on scalar fields A_i
- The most general form of the MSSM superpotential which does not violate gauge invariance and the SM conservation laws is:

 $W = \mu \epsilon_{ij} H_i^1 H_j^2 + \epsilon_{ij} Y_l^{IJ} H_i^1 L_j^I R^J + \epsilon_{ij} Y_d^{IJ} H_i^1 Q_j^I D^J + \epsilon_{ij} Y_u^{IJ} H_i^2 Q_j^I U^J$

which in LanHEP notation will take a form

keep_lets W. let W=eps*(mu*H1*H2+ml*H1*L*R+md*H1*Q*D+mu*H2*Q*U).

Where H1, H2, L, R, Q, U, D should be defined above as doublets and singlets in terms of scalar particles.

keep_lets statement substitution of H1, H2, L, R, Q, U, D in terms of their components

Using the superpotential formalism in the MSSM and its extensions

Yuakawa interactions are given by

$$-\frac{1}{2}\left(\frac{\partial^2 W}{\partial A_i \partial A_j}\Psi_i\Psi_j + H.c.\right)$$

which in the LanHEP language will take form

lterm - df(W,H1,H2)*fH1*fH2 - ... + AddHermConj.

where fH1, fH2 should be defined above as fermionic partners of corresponding multiples, e.g.

Using the superpotential formalism in the MSSM and its extensions

FF* term from scalar supersymmetric potential

$$V = \frac{1}{2}D^aD^a + F_i^{\star}F_i$$
 where $F_i = \partial W/\partial A_i$

in LanHEP notation will take a form

where Wc should be decleared above as the conjugate superpotential

FF*term can be introduced even in shorter way as lterm - dfdfc(W,H1) -

where dfdfc(W,H1) function evaluates the variational derivative, multiplies it by the conjugate expression and returns the result

CalcHEP interface with MC generators via events in Les Houches accord format (LHE)

Apologies for all unlisted programs

Events generation with CalcHEP

• format of the event_nn.txt files

 the idea is to generate events for production and decay process and connect them together into LHE file

Events generation with CalcHEP

```
~/proj/intro to hep tools/calc work 2.5.4/pp wbb ckml>
../bin/subproc_cycle 1000 1000
#Subprocess 1 ( u, D -> W+, b, B ) Cross section = 9.7505E+00 ,
                                                                  1000 events
#Subprocess 2 ( U, d \rightarrow W-, b, B
                                 ) Cross section = 5.5019E+00 . 1000 events
#Subprocess 3 ( d, U -> W-, b, B ) Cross section = 5.5315E+00 ,
                                                                  1000 events
#Subprocess 4 ( D, u \rightarrow W+, b, B ) Cross section = 9.7105E+00 ,
                                                                  1000 events
#Subprocess 5 ( s, C -> W-, b, B ) Cross section = 1.5902E+00 ,
                                                                  1000 events
#Subprocess 6 ( S, c \rightarrow W+, b, B ) Cross section = 1.3525E+00 ,
                                                                  1000 events
#Subprocess 7 ( c, S -> W+, b, B
                                 ) Cross section = 1.3425E+00
                                                                  1000 events
#Subprocess 8 ( C, s -> W-, b, B
                                 ) Cross section = 1.5716E+00
                                                                  1000 events
Sum of distributions is stored in file distr 34 41
Total Cross Section 36.3512 [pb]
~/proj/intro to hep tools/calc work 2.5.4/w decay>
../bin/subproc cycle 1000
width (W+) = 0.67001
#Subprocess 1 ( W+ -> E, ne
                               width=2.2339E-01 Br=0.3334129341 Nevents= 334
                               width=2.2339E-01 Br=0.3334129341 Nevents= 334
#Subprocess 2 ( W+ -> M, nm
#Subprocess 3 ( W+ -> L, nl
                               width=2.2323E-01 Br=0.3331741317 Nevents= 334
width(W-)=0.67001
#Subprocess 4 ( ₩- -> e, Ne
                               width=2.2339E-01 Br=0.3334129341 Nevents= 334
                               width=2.2339E-01 Br=0.3334129341 Nevents= 334
#Subprocess 5 ( ₩- -> m, Nm
#Subprocess 6 ( W- -> 1, Nl
                               width=2.2323E-01 Br=0.3331741317 Nevents= 334
```

Dirs are accessible at http://www.hep.phys.soton.ac.uk/~belyaev/proj/intro_to_hep_tools/

Events generation with CalcHEP

bin/event_mixer nevents event_dirs

mixes subprocesses and connects scattering and decay events

bin/event_mixer 1000 pp_wbb_ckm1 w_decay total cross section 1.166E+01 Max number of events 3728

• the output is event_mixer.lhe file

```
<LesHouchesEvents version="1.0">
<1---
File generated with CalcHEP-PYTHIA interface
-->
<header>
<slha>
</slha>
</header>
<init>
                                                                                                  1
  2212 2212 7.0000006860E+03 7.0000006860E+03
                                                                                   -1 3
                                                              -1
                                                                     -1
                                                                            -1
  1.16593335502E+01 0.0000000000E+00 1.000000000E+00
                                                                      1
</init>
<event>
           1.000000E+00
                              2.8420000E+02
       1
                                               -1.0000000E+00
                                                                 -1.0000000E+00
              -1
                     0
                                   501
                                          0.0000000000E+00
        -3
                          0
                             0
                                                               0.0000000000E+00
                                                                                      1.54424456520E+02
            \begin{array}{ccccccc} -1 & 0 & 0 \\ 2 & 1 & 2 & 0 \\ 1 & 1 & 2 & 500 \\ 1 & 1 & 2 & 0 \\ 1 & 3 & 3 & 0 \\ 1 & 3 & 0 & 0 \end{array}
              -1
                     0
                          0
         4
                            500
                                          0.0000000000E+00
                                      0
                                                                0.0000000000E+00
                                                                                    -1.30792414
        24
                                      0 -9.99292465447E+01 -1.63668803915E+01
                                                                                    -6.48692987742E+01
         5
                                      0
                                                                2.15593961832E+01
                                          7.34149473360E+01
                                                                                      4.23390519202E+01
        -5
                               0 501
                                          2.65142992097E+01 -5.19251579179E+00
                                                                                      4.61622886720E+01
       -11
                                      0 - 7.19345413730E + 01
                                                                7.47572186340E-01 -8.03452022142E+01
                          3
                     3
        12
                                n
               1
                                      0 -2.79947051718E+01 -1.71144525779E+01
                                                                                     1.54759034400E+01
</event>
```

Alexander Belyaev

calchep_batch batch_file

calchep_batch batch_file Progress information can be found in the html directory. Simply open the following link in your browser: file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html

Main Features

batch_file

- •Batch file
- Process library
- Runs
- Combines decays
- •Parallelization
- •HTML progress

Model:	Standard Model(CKM=1)
Model change	ed: False
Gauge:	Feynman
Process:	p,p->₩,b,B
Decay:	₩->ll,nn
Composite:	p=u,U,d,D,s,S,c,C,b,B,G
Composite:	W=W+,W-
Composite:	ll=e,E,m,M,l,L
Composite:	nn=ne,Ne,nm,Nm,nl,Nl

file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html

Home Symbolic Results Numerical Results Events Library Process Library Help

Thank you for using CalcHEP! Please cite arXiv:0000.0000

CalcHEP Batch Details

Standard Model(CKM=1)

Done!

Finished Time(hr) Symbolic 14/14 0.00

σ	1/1	0.03
Events	1/1	0.05

file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html

Symbolic Sessions

Home Symbolic Results Numerical Results Events Library Process Library Help

Thank you for using CalcHEP! Please cite arXiv:0000.0000

Standard Model(CKM=1)

Processes Lib PID Time(hr)

u,D->W+,b,B ✓ U,d->₩-,b,B ✓ d,U->W-,b,B ✓ D,u->W+,b,B ✓ s,C->W-,b,B ✓ S.c->W+,b,B ✓ c,S->W+,b,B ✓ C,s->₩-,b,B ✓ W+->E.ne 1 W+->M,nm 1 W+->L,nl 1 W-->e.Ne 1 W-->m,Nm 1 W-->1.N1 1 Widths 1

file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html

Home Symbolic Results Numerical Results Events Library Process Library Help

Thank you for using CalcHEP! Please cite arXiv:0000.0000

Numerical Sessions

Standard Model(CKM=1)

Done!

Runs σ (fb) Running Finished Time (hr) N events

Single	12350	0/15	15/15	0.14	50000
				0.14	

file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html

Standard Model(CKM=1)

Done!

Home	-	(0)	n in		294 S	N . 1. 17.
Symbolic Results	Processes	σ (fb)	PID	Time (hr)	N events	Details
NI : 1 D 11	u,D->W+,b,B	1004/	27115	0.02	14910/14910	prt_1 session.dat
Numerical Results	U,d->W-,b,B	5636.4	27125	0.01	8364/8364	prt_1 session.dat
Evente Library	d,U->W-,b,B	5567.9	27129	0.01	8263/8263	prt_1 session.dat
Events Library	D,u->W+,b,B	9850.2	27145	0.02	14618/14618	prt_1 session.dat
Process Library	s,C->W-,b,B	1609.9	27366	0.01	2389/2389	prt_1 session.dat
1100055 Library	S,c->W+,b,B	1359.9	27370	0.01	2018/2018	prt_1 session.dat
Help	c,S->W+,b,B	1374.5	27563	0.01	2039/2039	prt_1 session.dat
F	C,s->W-,b,B	1614.8	27581	0.01	2396/2396	prt_1 session.dat
	Total	37061			54997/54997	
Thank you for using	Desarra	F (Cal)	DID	Time (hr)	N. evente	Detaile
rhann you for abing	Decays	1 (Gev)	PID	nime (nr)	N events	Details
CalcHEP!	W+->E,ne	0.22339	27503	0.01	255000/254999	prt_1 session.dat
Diseas site anVir 0000 0000	W+->M,nm	0.22339	27001	0.01	255000/254999	prt_1 session.dat
Please cite arXiv:0000.0000	W+->L,III	0.22323	27891	0.01	255000/254999	prt_1 session.dat
	W>e,Ne	0.22339	27893	0.01	255000/254999	prt_1 session.dat
	W>m,Nm	0.22339	27890	0.01	255000/254999	prt_1 session.dat
	W>1,N1	0.22323	27905	0.01	255000/254999	prt_1 session.dat
	Widths		PID	Time (hr)		Details
	Widths		28254	0.01		session.dat
	Total	12350		0.14		

"Collider phenomenology with CalcHEP"

file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html Distributions

Home Symbolic Results Numerical Results Events Library Process Library Help

Thank you for using CalcHEP! Please cite arXiv:0000.0000

Recent applications: B-L extension of SM [see M. Pruna's talk]

Extra U(1)' : Z', heavy long leaving neutrino

(in collaboration with S. Moretti, L. Basso, M.Pruna, C. Shepherd)

arXiv:0812.4313 arXiv:0903.4777

Alexander Belyaev

"Collider phenomenology with CalcHEP"

Recent applications: W' 3-lepton signatures from 3-site Higgsless model arXiv:0708.2588 LHC reach for WZ->W' process

Vumber of events/25 GeV

Z' line shape for $e^+e^- \rightarrow W^+W \rightarrow I^+I_{VV}$, $\sqrt{s}=500 \text{ GeV}$

[AB, Chivukula, Christensen, He, Kuang, Pukhov, Qi, Simmons, Zhang '07]

Z' line shape Z' study at ILC: the Z' width can be measured precisely [2.5%], So we will be able to understand which higgsless model takes place!

q arXiv:0907.2662 AB, Chivukula, Christensen, Simmons, Н He, Kurachi, Tanabashi F,

$$SU(2)_L \times SU(2)_H \times U(1)_R$$

q

 $\Sigma_1 \Sigma_2$

F,

Recent applications: phenomenology of WalkingTechnicolor models [see F. Sannino's talk]

arXiv:0809.0793 AB, Foadi, Frandsen, Järvinen

Pukhov, Sannino

Recent applications: sbottom coannihilation scenario at ILC

If sbottom and neutralino have a small mass split they can account for coannihilation in early Universe through this type of diagrams:

the small mass split leads to very soft b-jets and missing p_{T} .

work in progress AB, Nomerotski, Lastovicka, Medin Pukhov,

$$e^+e^- \rightarrow e^+e^-b\bar{b}$$

background process

one of 50 diagrams is regularized by non-zero electron mass the minimal $(p_1-p_3)^2$ is non zero and equal to

$$-m_e^2 \frac{(E_1 - E_3)^2}{E_1 E_3}$$

numerical cancellations are of the order of m_e⁴/E⁴ ~ 10⁻³⁰ and one should keep 30 digits this is possible only in quadruple precision

We have powerful tools connected in one chain!

What is the most time consuming link?

Alexander Belyaev

We have powerful tools connected in one chain!

What is the most time consuming link?

Alexander Belyaev

Future plans

- Include finite width into production-decay connection (done!)
- Include polarization effects into production-decay chain
- kinematical cuts generalization (done!)
- QCD scale definition (leading diagram)
- polarization for massive particles
- database of the models

Final remarks

Advantages of CalcHEP –

easy model implementation, convenient interface, batch mode.

- Ready to be used by wide range of HEP community: from model builders to experimentalists!
- Read manuals/help all details are there!
- Automation tools are powerful but should not be blindly trusted or blamed !

Backup Slides

control of resonances

phase-space mapping

running subproc_cycle for SM(CKM=1) model

Note the d- and s- quarks IDs

d- <mark>q</mark> uark	l d	1 D	181	11	10	10	13	1	l d
u-quark —	lu	10	12	11	10	10	13	T	lu
s-quark	ls	15	183	11	10	10	13	1	ls

For SM(CKM=1) model PDF of d- and s- quarks is redefined

Syntax of LanHEP

- The LanHEP input file is the sequence of statements, each starts with a special identifier (such as parameter, lterm, etc) and ends with the full-stop '.' symbol. Statement can occupy several lines
- Identifiers: Indentfiers are the names of particles, parameters etc.
- Constants: integers, floating point numbers, strings
- Comments: '%','/*' ... '*/'
- Order of the indices of the objects (default): [spinor, color c3, color c8, vector]
- declaring new groups:

```
group color:SU(3).
repres color:(c3/c3b,c8).
```

parameter name=value:comment.

- parameters
- particles
 scalar P/aP:(options).
 spinor P/aP:(options).
 vector P/aP:(options).

Specials

Syntax of LanHEP

gamma, gamma5, moment, deriv, lambda, f_SU3
declaring new specials: special name:(islist).

Orthogonal matrices

```
<code>OrthMatrix( \{\{a_{11}, a_{12}\}, \{a_{21}, a_{22}\}\} ).</code>
```

Including files

read file. or use file. (no multiple reading)

Checking electric charge conservation

```
SetEM(photon, param).
```

- Running LanHEP
- lhep filename options
- <u>-OutDir directory</u> Set the directory for output files
- -InDir *directory* Set the directory where to search files

<u>-tex</u> LanHEP generates LaTeX files

<u>-frc</u> If -tex option is set, forces LanHEP to split 4fermion and 4-color vertices just as it is made for CompHEP files.

<u>-texLines</u> num Set number of lines in LaTeX tables

-texLineLength num Controls width of the Lagrangian

Vertices with color particles in CalcHEP

- The CalcHEP Lagrangian tables do not describe explicitly the color structure of a vertex.
- If color particles are present in the vertex, the following implicit contractions are assumed (p, q, r are color indices):
 - δ_{pq} for two color particles A_p^{g} and A_q^{g}
 - λ_{pq}^{r} for three particles, which are color triplet, antitriplet and octet
 - f^{pqr} for three color octets $f^{pqr}G^p_\mu G^q_\nu G^r_\lambda$
 - There are no other color structures in CalcHEP

Vertices with color particles in CalcHEP

- Here the field $X^p_{\mu\nu}$ is a Lorenz tensor and color octet, and this field has constant propagator.
- If gluon name in CalcHEP is 'G', the name 'G.t' is used for this tensor particle; its indices are denoted as 'm_' and 'M_'
 - ('_' is the number of the particle in table item).

						Vertices
-Clr-	-Del-S:	ize-Rea	d-Errl	les		
A1	162	IA3	184		Factor	<l>Lorentz part</l>
G	IG	IG	1	IGG		<pre>lm1.m2*(p1-p2).m3+m2.m3*(p2-p3).m1+m3.m1*(p3-p1).m</pre>
G	IG	lG.t	Ţ	lGG/Sqrt2		lm1.M3*m2.m3-m1.m3*m2.M3

Vertices with color particles in LanHEP

- The splitting of vertex with 4 colored particle into 3-particles vertices is done by LanHEP automatically: each vertex containing 4 color particles is split to 2 vertices which are joined by automatically generated auxiliary field
- option SplitCol1=N.

where N is a number:

- -1 remove all vertices with 4 color particles from Lagrangian;
- 0 turn off multiplet level vertices splitting;
- 1 allows vertices splitting with 4 color multiplets;
- 2 allows vertices splitting with any 4 scalar multiplets except Higgs
- option SplitCol2=N.
 - where N is a number:
 - O disable vertex level splitting;
 - ✤ 1 enable vertex level splitting (only for vertices with 4 color particles).
- the default value is 2 for SplitCol1 and 1 for SplitCol2

What do we do with LHE file?

- one of the options is to convert LHE file into ntuple and use PAW/Root packages to perform event analysis at the parton level
- bin/nt_maker event_mixer.lhe → produces event_mixer_1.nt
- cd paw ; pawX11 ; exe dubna.kumac

