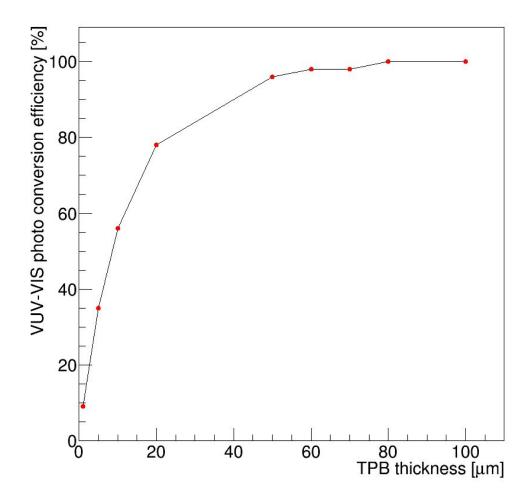
Simulation status

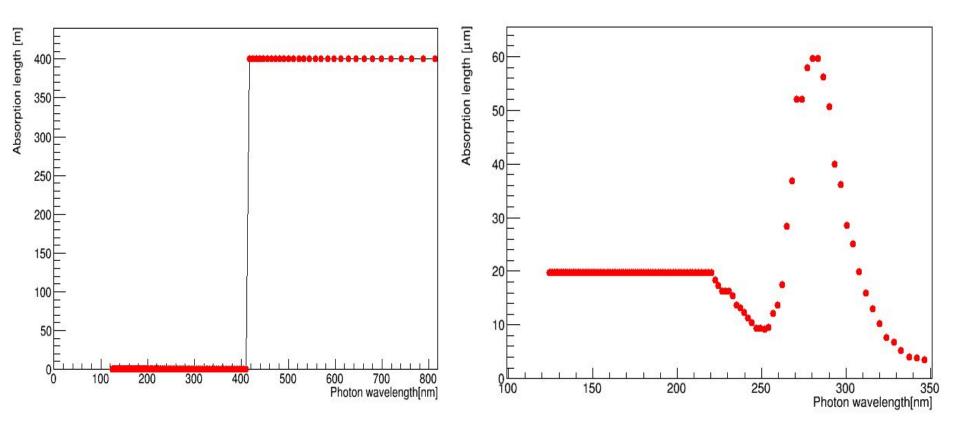
Edgar Sánchez García (CIEMAT) <u>edgar.sanchez@ciemat.es</u> 13-02-2018

Solder paste Cu pipe


- 1 g of solder paste assumed. Placed at 20 cm from top cap.

Isotope	Radioimpurity [mBq/kg]	Events ROI [evt/week]	Events ROI && untagged [evt/week]
²³⁸ U	12	32	2
²³² Th	4	7	0
⁴⁰ K	1236	150	24
Total		182	26

- The contamination levels are rough estimations (based in DS-20K database).
- The amount of solder paste necessary is estimated too.
- Large contribution comes from the ⁴⁰K (40 ppb).


TPB thickness

- $^{-}$ ^{39}Ar simulation with different TPB thickness from 100 μm to 1 $\mu m.$
- ⁻ The conversion efficiency from VUV to VIS decreases under 60 μ m.

TPB thickness

- G4DS TPB absorption length for photons.
- 20 µm for VUV-photons.
- Efficiency of emission $\rightarrow 1$ Number of photons produced $\rightarrow 1$
- Time \rightarrow 1.5 ns

External background production

- Massive production of ²³⁸U, ²³²Th and ⁴⁰K γ-events without lead belt using cluster. Single phase ArDM geometry implemented.
- Generator: cylinder 7 m total height and 1.5 m radius.

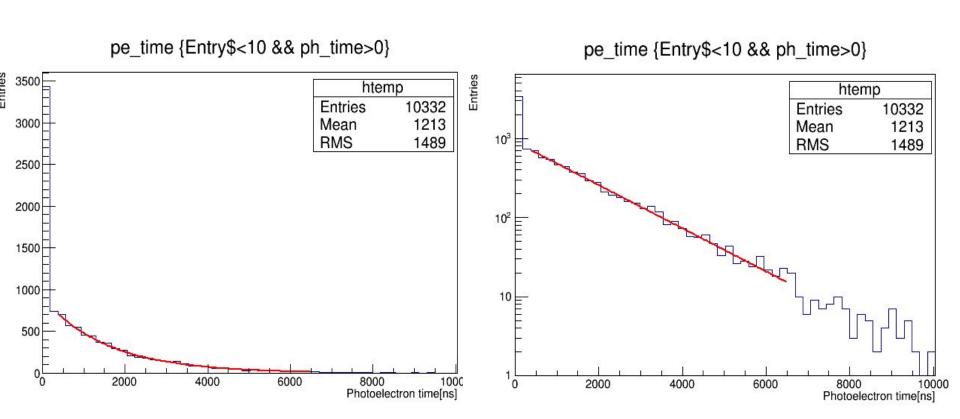
Monitoring of the simulation jobs in EULER

Last update:	Wed Feb	13 10:32:58	CET 2019

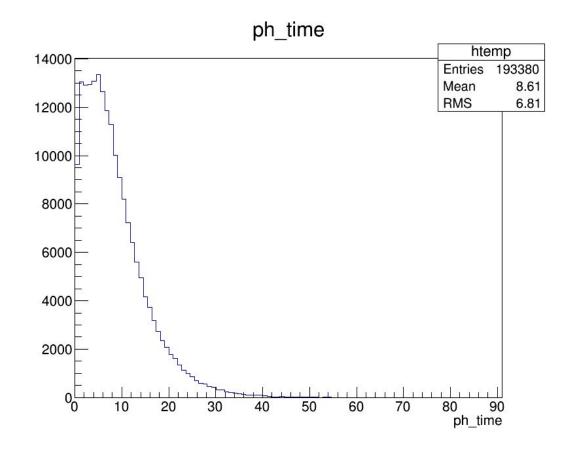
	jol	files		
user	running	queued	fil	root
Pablo	0	0	0	0
Vicente	0	0	8	2741
Edgar	31	30	496	712
Roberto	0	0	8	2797
Total	31	30	512	6250

	events ×		events × × 1e6 %			jobs				files	
RN	requested	done	ArDM	fraction	requested	queued	running	done	%	fil	root
K	3000000600.0	6309220160.0	1276226409.0	21.03	600	440	40	120	20.00	80	80
U	432000008640.0	28767920608.0	5960304766.0	6.66	8640	8032	120	488	5.65	256	5906
Th	79200001584.0	18870790440.0	3877728959.0	23.83	1584	1144	88	352	22.22	176	264
Total	541200010824	53947931208	11114260134	9.97	10824	9616	248	960	8.87	512	6250

Full list of jobs


Modification to internal design

		Old design	Design proposed by Marcin
Inner cylinder \rightarrow	Internal diameter	71 mm	76.2 mm
	External diameter	84.2 mm	93.3 mm
	Thickness	6.6 mm	8.5 mm
	Collection efficiency	2.7 %	2.4 %


- Good collection uniformity with Z and R in both designs.
- With the new design the volume is a 6 % larger.
- From the point of view of simulation it is a reasonable design.

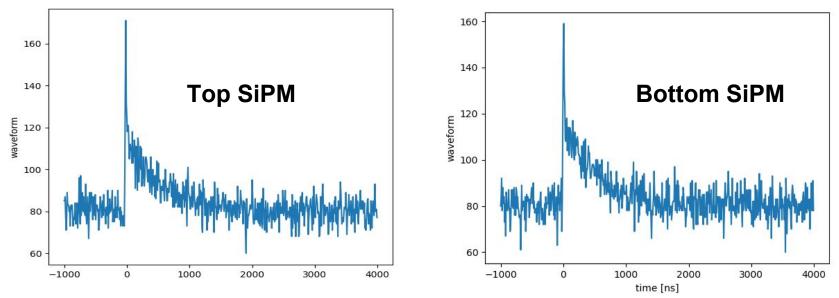
- β events with different energy generated.
- From the light simulation:

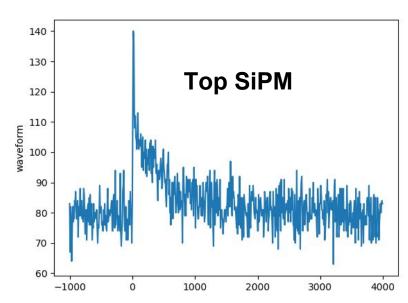
T_{slow} ~ 1559 ns F₉₀ ~ 0.29

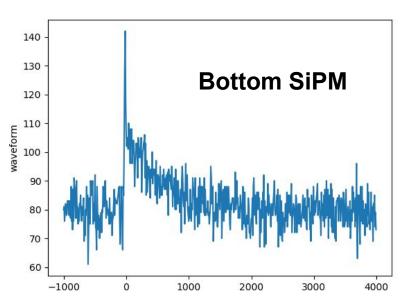


- 5 MeV α events with different energy generated.

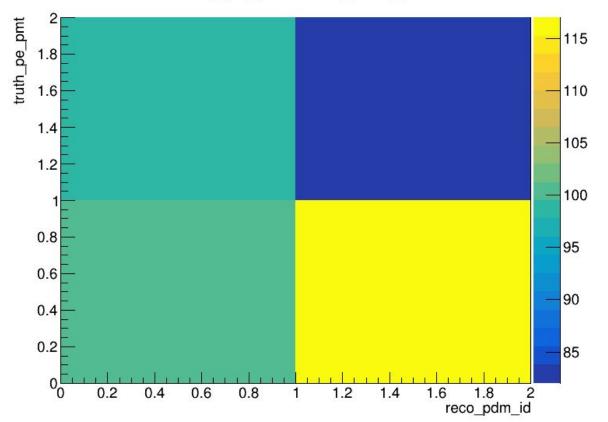
 Triplet to single ratio and quenching factor are not working well for α events in G4DS.


- For the moment triplet to single ratio changed to constant value 0.7
- We need to look in detail for a more realistic ratio and some quenching factor references.
- From the light simulation:

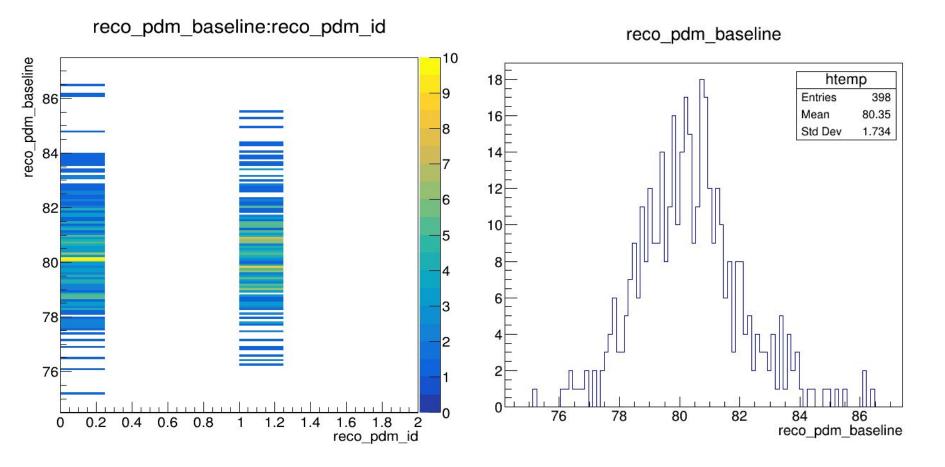

- Channel identification included for DArT in order to have inputs compatibles with the electronic MC.
- PDE cut applied in simulation with a flat random distribution between 0 and 1 (PDE <0.4).
- Config file with default parameters (we need to change the DAQ).


```
[base]
                                            [arma]
#seed = 1234
                                            # gain is the height of the single p.e. signal in ADC channels (amplitude, not charge)
ev max = 200
                                            qain = 80
                                            tau = 540e - 9
[ds20k]
                                            sigma = 8e-9
n channels = 2
                                            # scale is the probability of the SiPM slow component (charge ratio, not amplitude ratio)
                                            scale = 0.94
[dag]
eff = 0.9
                                            [reco]
jitter = 20e-9
                                            baseline from = -le-6
                                            baseline to = -20e-9
qate = 5e-6
pre = 1e-6
                                            t0 cumfrac = 0.20
sampling = 125e6
                                            fprompt from = -1e-6
snr = 5
                                            fprompt to = 90e-9
baseline = 80
                                            # for the moment, integration is performed over the full gate
bits = 12
[sipm]
spread = 0.08
dcr = 200
ap-tau = 3e-6
# these are probablities and not mean values
ap = 0.15
dict = 0.2
phct = 0
```

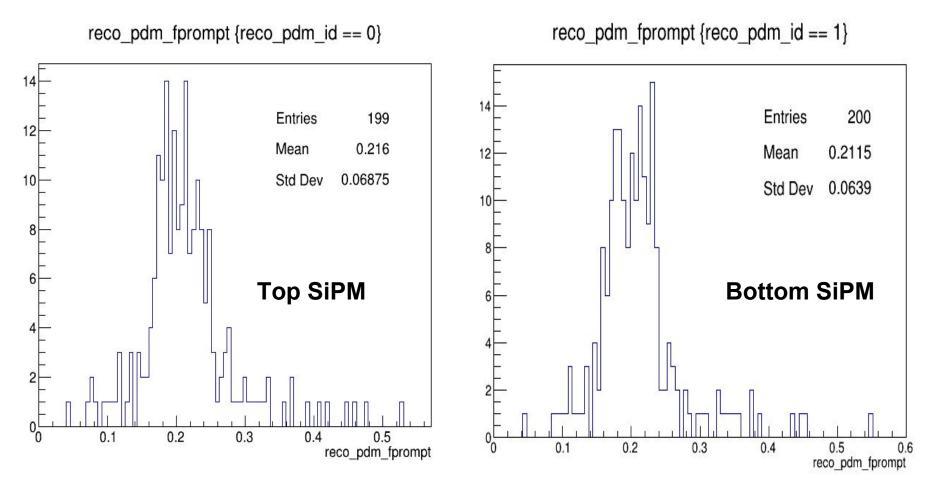
- 200 keV α event with SNR 15 and baseline 80



- 2000 keV β event with SNR 15 and baseline 80



truth_pe_pmt:reco_pdm_id


- Truth channel ID vs Reconstructed ID. There are a lot of bad identificated events.

- Baseline around 80. It is consistent in both channels.

reco_pdm_fprompt {reco_pdm_id == 0} reco_pdm_fprompt {reco_pdm_id == 1} Entries 199 Entries 198 14 Mean 0.2127 Mean 0.215 12 Std Dev 0.05918 Std Dev 0.06083 10 **Bottom SiPM Top SiPM** 0.1 0.2 0.3 0.4 0.5 0.6 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 reco pdm fprompt reco pdm fprompt

- 2000 keV β event with SNR 15 and baseline 80
- It can be consistent with the 0.29 of the light simulation.

- 200 keV α event with SNR 15 and baseline 80
- It is inconsistent with the 0.7 that we expect.
- I need to check if the code is working right or if we need to modify the input.