

CMS Computing Model: Notes for a discussion with Super-B

Claudio Grandi [CMS Tier-1 sites coordinator - INFN-Bologna]

Daniele Bonacorsi [CMS Facilities Ops coordinator – University of Bologna]

Outline

The CMS distributed computing system

from guiding principles to architectural design

Workflows (and actors) in CMS computing

- Computing Tiers
- A glance to Data Management (DM) and Workload Management (WM) components

The realization of the CMS Computing Model in a Grid-enabled world

- Implementation of production-level systems on the Grid
- Data Distribution, MonteCarlo (MC) production, Data Analysis
- Computing challenges
 - Worldwide LCG challenges, and experiment-specific challenges

The CMS Computing Model

The CMS computing system relies on a distributed infrastructure of Grid resources, services and toolkits

- distributed system to cope with computing requirements for storage, processing and analysis of data provided by LHC experiments
- building blocks provided by Worldwide LHC Computing Grid [WLCG]
 - CMS builds application layers able to interface with few at most different Grid flavors (LCGn, EGEE, OSG, NorduGrid, ...)

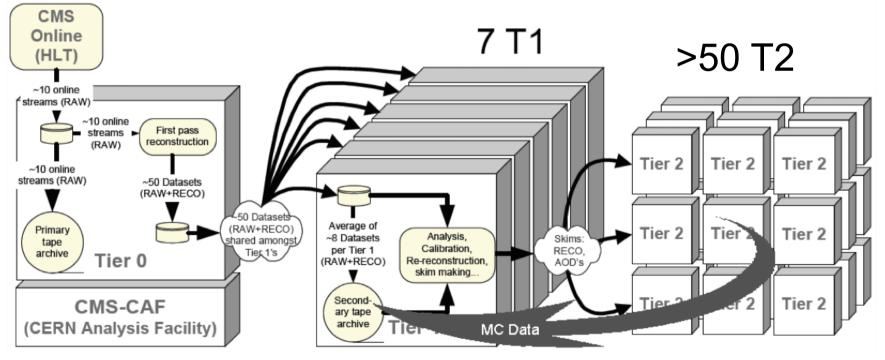
Several steps:

- CMS Computing Model document (CERN-LHCC-2004-035)
- CMS C-TDR released (CERN-LHCC-2005-023)
 - in preparation for the first year of LHC running
 - not "blueprint", but "baseline" targets (+ development strategies)
 - hierarchy of computing tiers using WLCG services and tools
 - focus on Tiers role, functionality and responsibility
- Now partially "old" already?
 - ECoM group
 - To consider Evolution of Computing Model from Startup to Steady State (ECoM)
 - To digest and include the lessons learned

17 Sep 2009 - Meeting with Super-B at CNAF

The Computing Project

Technical Design Report

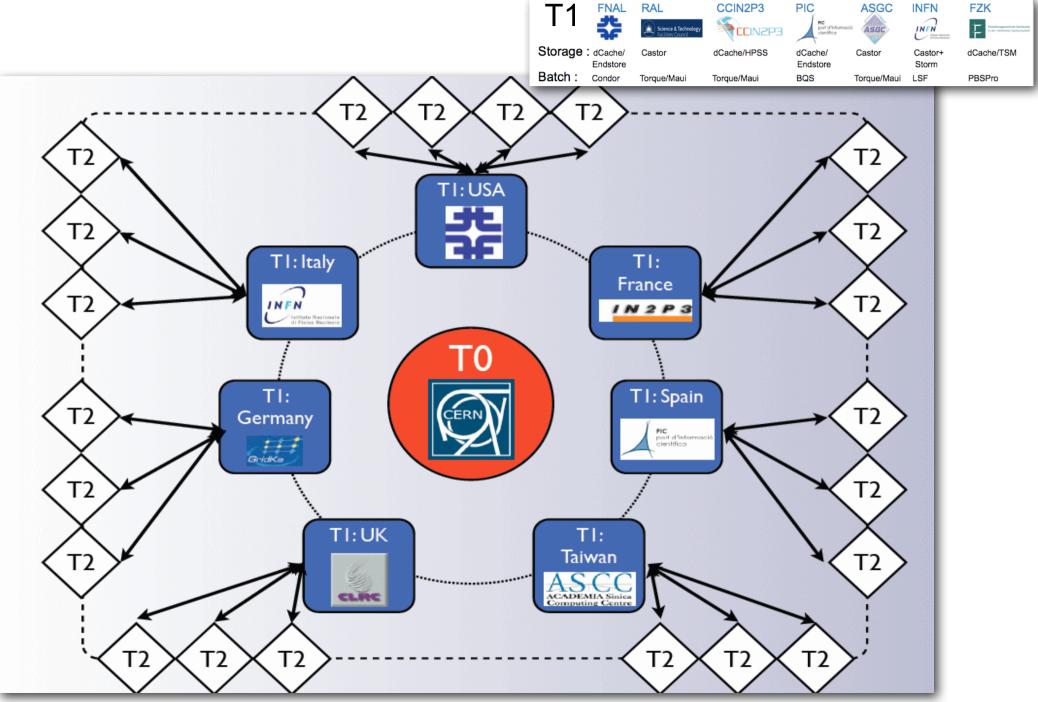

A Tiered architecture

T0 (CERN):

- Accepts data from DAQ
- Prompt reconstruction
- Data archive and distribution to T1's

CAF (CERN Analysis Facility for CMS):

- Access to full RAW datasets
- Focused on latency-critical activities (detector diagnostics, trigger performance services, derivation of Al/Ca constants)
- Provide some CMS central services (e.g. store conditions and calibrations)


7 T1 centers and >50 T2 centers (and a growing nb of T3's...)

See next slide

17 Sep 2009 - Meeting with Super-B at CNAF

Towards a 'mesh' model

17 Sep 2009 - Meeting with Super-B at CNAF

Daniele Bonacorsi, Claudio Grandi

T1/T2 roles

CMS T1 functions

- Scheduled data-reprocessing and dataintensive analysis tasks:
 - later-pass reco, AOD extraction, skimming, ...
- Data archiving (real+MC):
 - custody of raw+reco & subsequently produced data
- Disk storage management:
 - fast cache to MSS, buffer for data transfer, ...
- Data distribution:
- data serving to Tier-2's for analysis
- Data Analysis
 - 5-10% of all processing is RAW data analysis, via special role

CMS T2 functions

- 50% user data analysis
 - Data processing for calib/align tasks and detector studies
 - Proficient data access via CMS+ WLCG services
- 50% MC event prod
 - both fast and detailed
- Import skimmed datasets from T1s
- Export MC data to T1s

A data-driven baseline

Baseline system with minimal functionality for first physics

- + 'Keep it simple!'
- Use Grid services as much as possible + add CMS-specific services if/where needed
- Optimize for the common case
 - for read access (most data is write-once, read-many)
 - for organized bulk processing, but without limiting single user
- Decouple parts of the system
 - Minimize job dependencies + site-local information remain site-local

T0-T1's activities driven by data placement

- Data is partitioned by the experiment as a whole
- All data is placed at a site through explicit CMS policy
 - do not move around in response to job submission
- + Leads to very 'structured' usage of Tier-0 and Tier-1
 - T0 and T1 are resources for the whole esperiment
 - activities and functionality are largely predictable since nearly entirely specified
 - i.e. organized mass processing and custodial storage

'Unpredictable' computing essentially restricted to data analysis at T2s

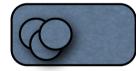
- + T2s are the place where more flexible, user driven activities can occur
- Very significant computing resources and good data access are needed

17 Sep 2009 – Meeting with Super-B at CNAF

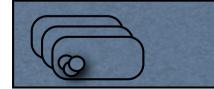
Daniele Bonacorsi, Claudio Grandi

Data organization

CMS expects to produce large amounts of data (evts)


+ O(PB)/yr

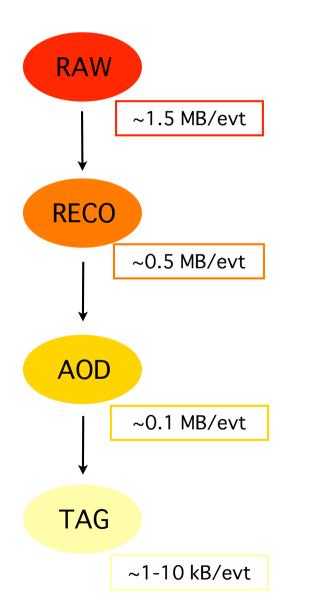
Event data are in files


- ◆ average file size is kept reasonably large (≥ GB)
 - avoid scaling issues with storage systems and catalogues when dealing with too many small files
 - file merging also implemented and widely used in production activities
- O(10^6) files/year

Files are grouped in fileblocks

- group files in blocks (1-10 TB) for bulk data management reasons
 - exists as a result of either MC production or data movement
- 10^3 fileblocks/yr

Fileblocks are grouped in datasets



- Datasets are large (100 TB) or small (0.1 TB)
 - Dataset definition is physics-driven (size as well)

Data types

Data types/volumes as input parameters for the model

RAW

- Triggered evts recorded by DAQ
 - 2 copies: 1 at T0 and 1 spread over T1s

RECO

- Reconstructed objects with their associated hits
 - Detailed output of the detector reco: track candidates, hits, cells for calib
 - 1 copy spread over T1s (together with associated RAW)
- AOD (Analysis Object Data)
- Main analysis format: objects + minimal hit info
 - Summary of the reco evt for common analyses: particles id, jets, ...
 - Whole set copied to each T1, large fraction copied to T2

TAG

- Fast selection info
 - Relevant info for fast evt selection in AOD

Plus MC in ~ N:1 (N>=1) ratio with data

17 Sep 2009 – Meeting with Super-B at CNAF

Daniele Bonacorsi, Claudio Grandi

2009/10 Data Taking

- We are all eagerly waiting for the first collisions.
- Estimated the data volume for proton-proton collision for upcoming year:
 - 70 days running in 2009-10,

assuming 10 month LHC running with 40% availability, 8h fills and 5h turn-around.

- 300Hz rate in physics stream
- assume 26% mean overlap
- 2.3 · 10⁹ events
- 3.3 PB RAW data (1.5MB/evt)
- 1.1 PB RECO (0.5MB/evt)
- 220 TB AOD (0.1MB/evt)
- We will have multiple copies of the AOD at Tier-1's.
- We will have multiple re-reco passes.

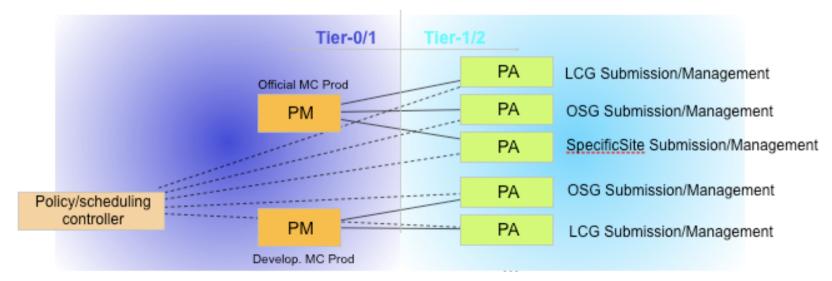
CMS Data Management

Provide tools to discover, access and transfer event data in a distributed computing environment

- Track and replicate data with a granularity of file blocks
- Minimize the load on catalogues

The 'logical' components:

- DBS (Dataset Bookkeeping system)
 - DBS provides the means to define, discover and use CMS event data
- DLS (Dataset Location Service)
 - DLS provides the means to locate replicas of data in the distributed system
- Iocal file catalogue solutions
 - A "trivial" file catalogue as a baseline solution
- PhEDEx (Physics Experiment Data Export)
 - integration with most recent EGEE transfer services

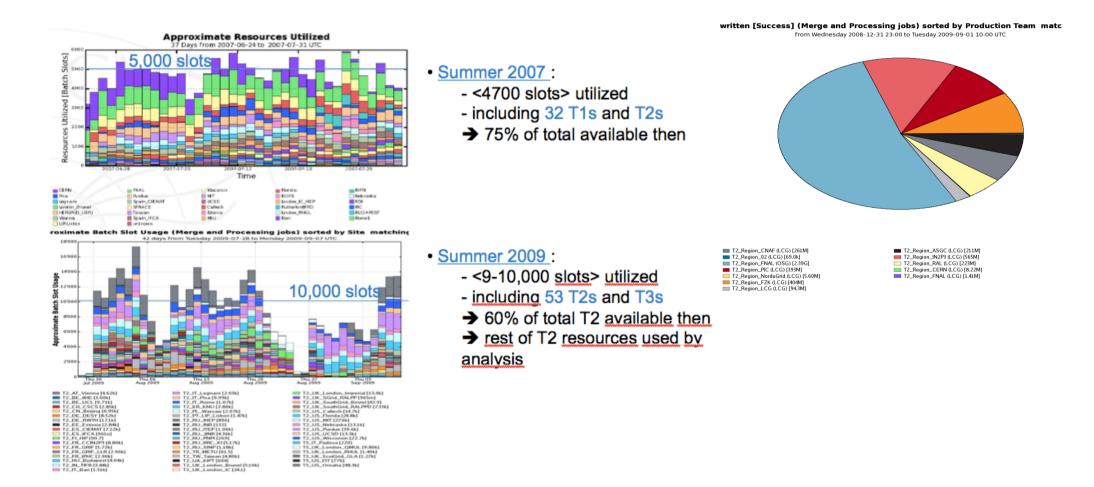

CMS MC production system

Current MC production system in production since 2006

- Overcome previous inefficiencies + introduce new capabilities
 - less man-power consuming, better handling of Grid-sites unreliability, better use of resources, automatic retrials, better error report/handling

Flexible and automated architecture

- ProdManager (PM) (+ the policy piece)
 - manage the assignment of requests to 1+ ProdAgents and tracks the global completion of the task
- ProdAgent (PA)
 - Job creation, submission and tracking, management of merges, failures, resubmissions, ...
 - It works with a set of resources (e.g. a Grid, a Site)


Daniele Bonacorsi, Claudio Grandi

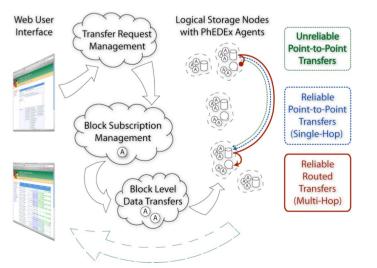
CMS MC production operations

MC prod operations strategy changed:

- + 2006-07 : 6 "regional teams" managed by a central manager
- 2008-09 : 1 central team (6 people) managing submissions in defined "T1-regions"

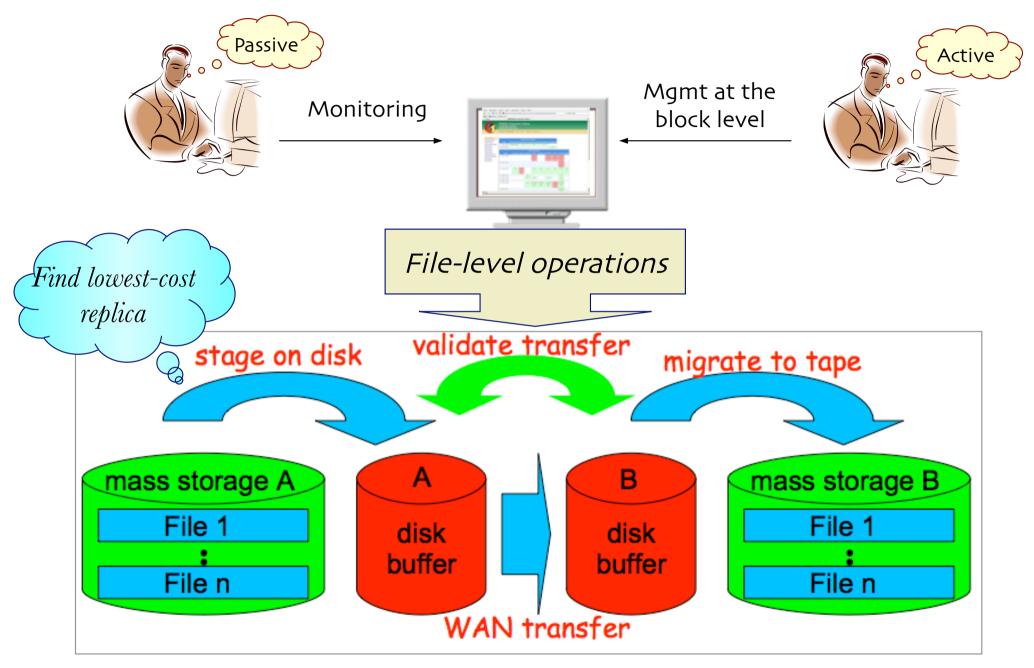
CMS Data Placement system

Physics Experiment Data Export (**PhEDEx**)

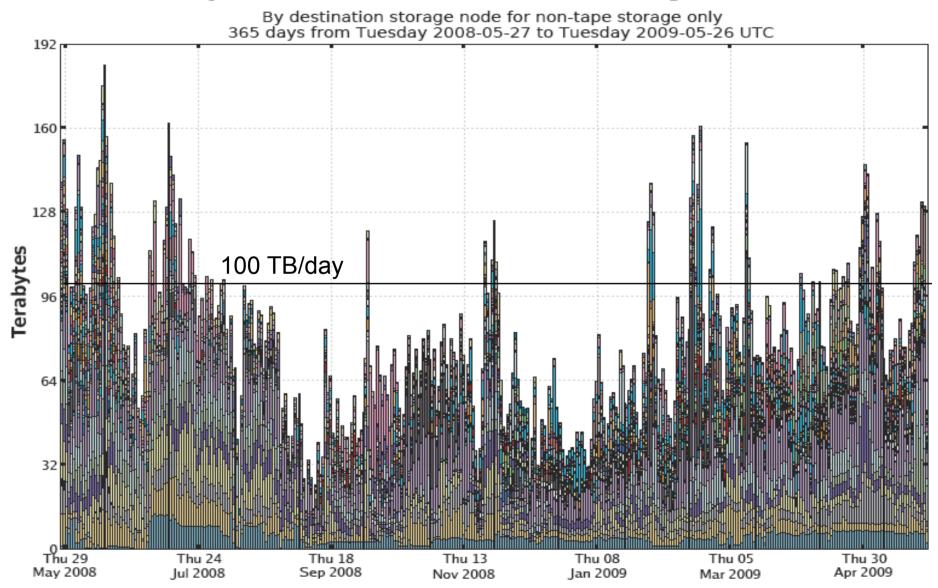

- Large-scale reliable and scalable dataset/fileblock replication
- multi-hop routing following a transfer topology (T0-T1-T2-T3's), data pre-stage from tape, monitoring, bookkeeping, priorities and policy, ...

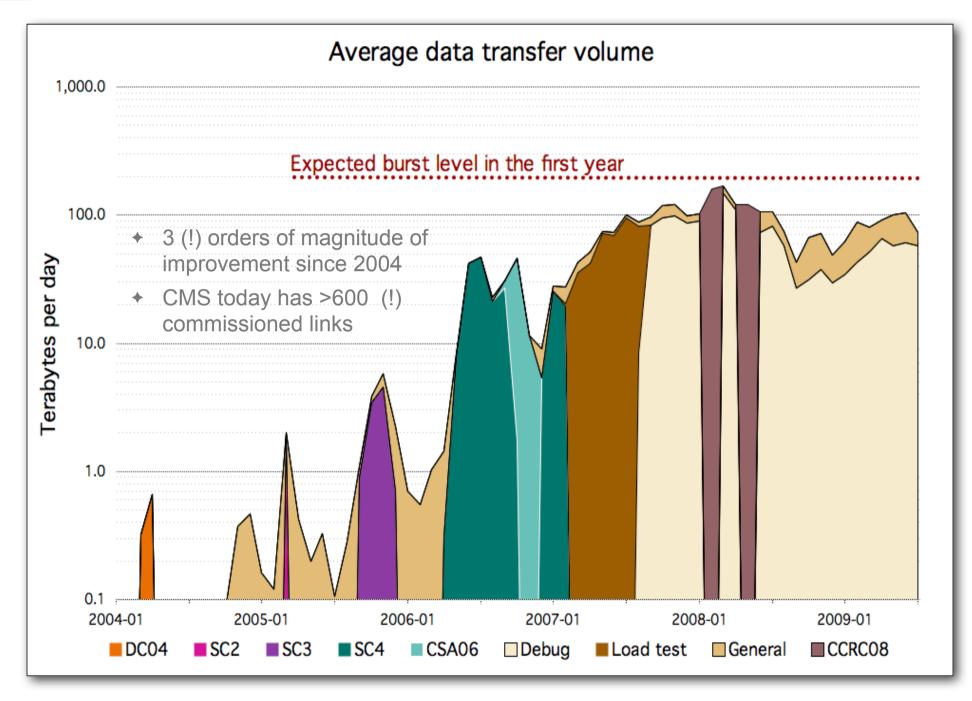
In production since almost 2004

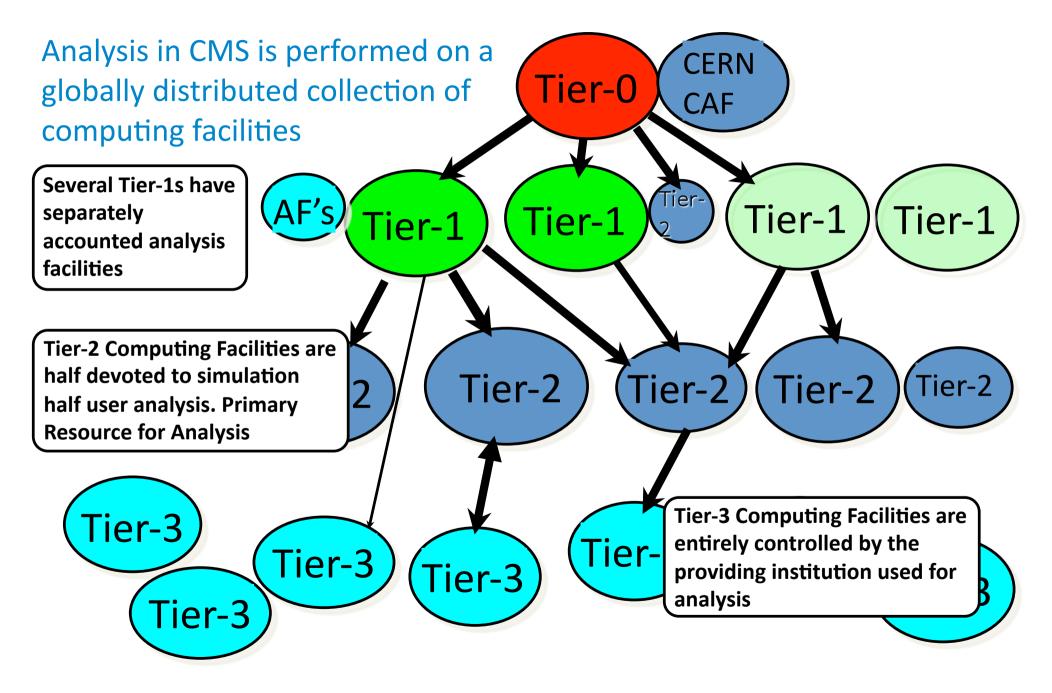
- In the hall-of-fame in terms of mature and high-quality production services for LHC experiments
- Managing transfers of several TB/day


PhEDEx integration with EGEE services

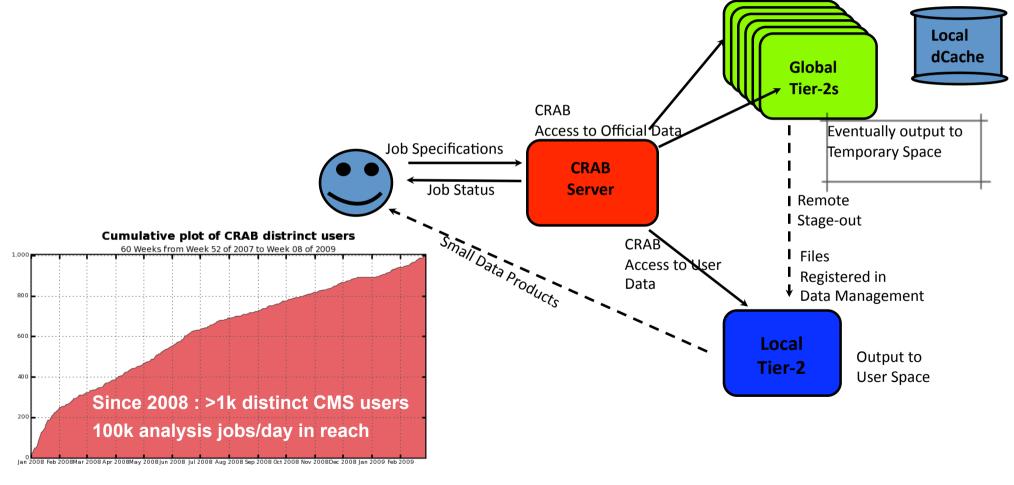
- gLite File Transfer Service (FTS)
 - PhEDEx takes care of reliable, scalable CMS dataset replication (and more...)
 - FTS takes care of reliable point-to-point transfers of files






Daily CMS PhEDEx transfer volume, Debug + Production

CMS Analysis resources



CMS Distributed Analysis on the Grid

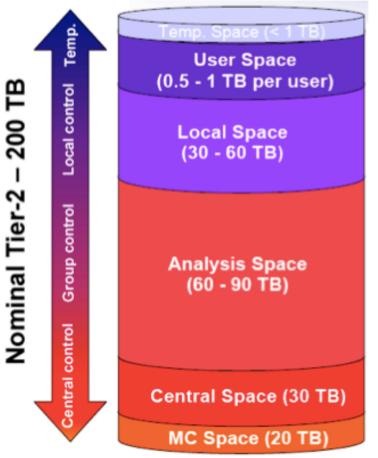
CMS Remote Analysis Builder (CRAB)

- Tool for job preparation, submission and monitoring
- Satisfies the needs of CMS users
- Better resource control usage via the CRAB Analysis Server

CRAB Users (1,006)

Total: 1,006 , Average Rate: 0.00 /s

CMS Tier-2 Disk Space management

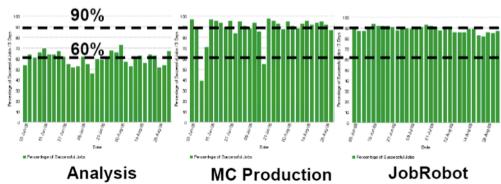

In CMS jobs go to the data : distribute data broadly

CMS attempts to share management of the space across groups

Ensures people doing the work have some control

200TB of disk space at a nominal Tier-2

- •20 x 1TB is identified for storing local user produced files and making them grid accessible
- 30TB is identified for use by the local group
- 2-3 x 30 TB reserved to CMS PH Analysis groups
- 30 TB for centrally managed Analysis Operations expect to be able to host most RECO data in 1sr y.
- 20 TB of space for DataOps for MC staging buffer



Job Slot utilization for Analysis

Maximum: 26,640 , Minimum: 0.00 , Average: 19,550 , Current: 23,105

- Current CMS total CPU pledge at T2s : 17k jobs slots
- Analysis pledge : 50%
- Utilization in August was reasonable

ECoM

A group to consider Evolution of Computing Model from Startup to Steady State

- re-examine the CMS Computing Model using various different use-cases that may occur during startup and before "steady state" is reached.
- revisit the utilization of resources, the pattern and distribution of data and exactly what happens where and when.
- several use-cases should be explored in order to understand what flexibility and agility is available ahead of the startup so as to be able to make mid-course corrections as required

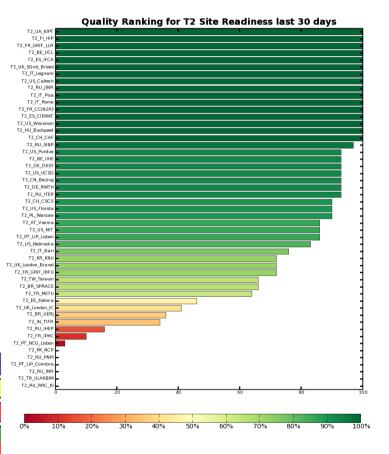
A work in progress.

Back-up

CMS Site Commissioning

- Objectives
 - Test all functionality required from CMS at each site in a continuous mode
 - Determine if the site is usable and stable
- What is tested?
 - Job submission
 - Local site configuration and CMS software installation
 - Data access and data stage-out from batch node to storage
 - "Fake" analysis jobs
 - Quality of data transfers across sites
- What is measured?
 - Site availability: fraction of time all functional tests in a site are successful
 - Job Robot efficiency: fraction of successful "fake" analysis jobs
 - Link quality: number of data transfer links with an acceptable quality
- What is calculated?
 - A global estimator which expresses how good and stable a site is

Statistics and plots

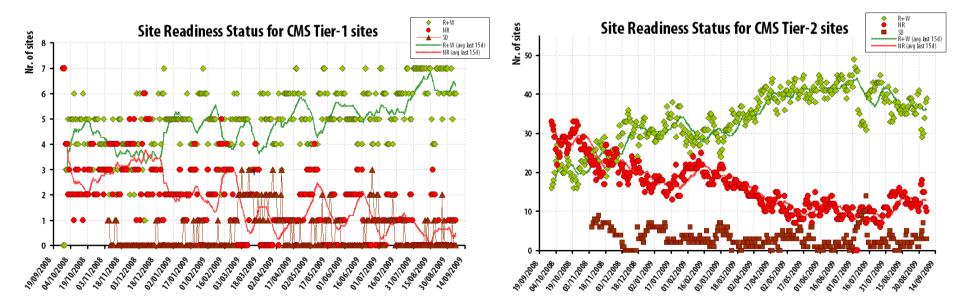

Site summary table

Site Name	SiteComm JR	<u>Commissioned Links</u> (expand this column)	<u>Site availability</u>	SiteReadiness Status	Maintenance in SAM	<u>Good links</u> (expand this column)
TO CH CERN	96%(500)	n/a	<u>88%</u>	n/a	n/a	n/a
T1 CH CERN	n/a	combined	88%	n/a	n/a	combined
T1 DE FZK	94%(600)	combined	<u>96%</u>	B	n/a	combined
T1 ES PIC	99%(500)	combined	<u>100%</u>		n/a	combined
T1 FR CCIN2P3	99%(600)	combined	<u>100%</u>	NE	n/a	combined
T1 IT CNAF	99%(600)	combined	<u>100%</u>	<u>R</u>	n/a	combined
T1 TW ASGC	98%(601)	combined	<u>100%</u>	B	n/a	combined
T1 UK RAL	99%(700)	combined	<u>100 %</u>	R	n/a	combined
T1 US FNAL	100%(700)	combined	<u>100 %</u>	B	n/a	combined
<u>T2 AT Vienna</u>	<u>95%(500)</u>	combined	<u>91 %</u>	<u>R</u>	n/a	combined
T2 BE IIHE	90%(332)	combined	<u>8 %</u>	B	n/a	combined
T2 BE UCL	<u>100%(600)</u>	combined	<u>10</u> 0%	<u>R</u>	n/a	combined
T2 BR SPRACE	97%(700)	combined	<u>9 5%</u>	B	n/a	combined
T2 BR UERJ	0%(597)	combined	<u>1%</u>	NR	n/a	combined
T2 CH CAF	n/a	combined	n/a	B	n/a	n/a
T2 CH CSCS	84%(600)	combined	1%	<u>w</u>	All services in maint	combined
<u>T2 CN Beijing</u>	98%(600)	combined	<u>9</u> 1%	B	n/a	combined
T2 DE DESY	99%(501)	combined	<u>9 %</u>	B	Some CE in maint.	combined
T2 DE RWTH	98%(500)	combined	<u>100%</u>	<u>R</u>	n/a	combined
T2 EE Estonia	99%(400)	combined	<u>88</u> %	NR	n/a	combined
T2 ES CIEMAT	100%(600)	combined	<u>100</u> 6	<u>R</u>	n/a	combined
T2 ES IFCA	76%(502)	combined	<u>889</u>	<u>w</u>	n/a	combined
T2 FI HIP	n/a	combined	<u>100%</u>	E	Some CE in maint.	combined
T2 FR CCIN2P3	n/a	combined	<u>100%</u>		n/a	combined
T2 FR GRIF IRFU	48%(284)	combined	<u>0%</u>		n/a	n/a
T2 FR GRIF LLR	100%(501)	combined	<u>100%</u>	B	n/a	combined

Site history

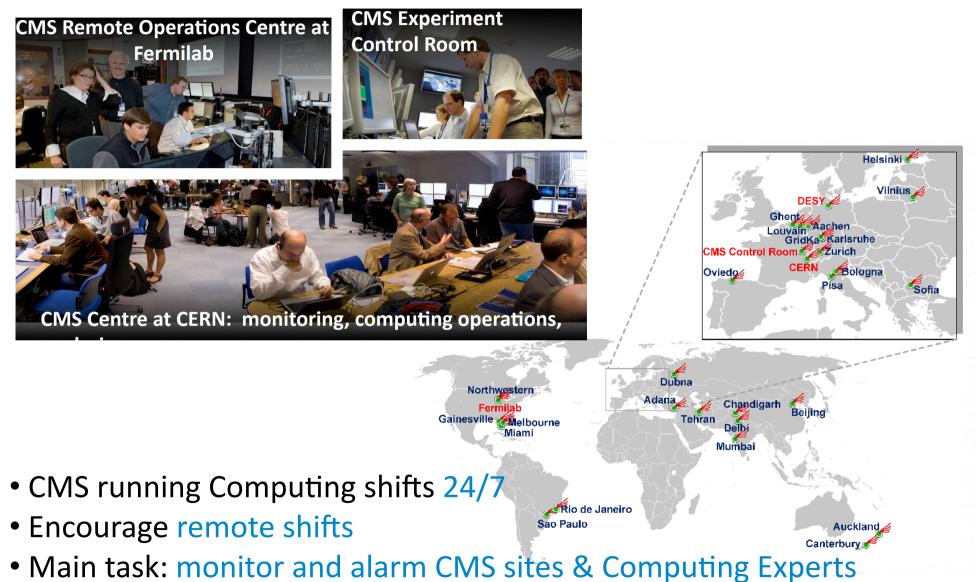
		T2_ES_IFCA																					
		(Site	Rea	adin	ess	Sta	tus:	R	R	R	R	R	R	R	W	W	R	R	R	R	R	W
	Daily Metric:	0	Е	Е	0	0	0	0	0	0	0	0	0	0	0	Е	Е	0	0	0	0	0	Е
1	Maintenance:	Up	Up	Up	Up	Up	Up	Up	Up	Up	Up	Up	Up	Up	Up	Up	Up	Up	Up	Up	Up	Up	Up
	Job Robot:			44%		99%	100%						100%	100%						96%	99%		
	SAM Availability:			52%		100%	100%						100%	100%		40%				100%	100%	100%	
	T2::uplinkT1s:	8		8		8	8						8	8	8		8	8	8	8	8	8	8
	T2::downlinkT1s:	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5
		11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	01
		Aug																					Sep

Site ranking



The CMS Site Commissioning team

How can this be used?


- To measure global trends in the evolution of the reliability of sites
 - Impressive results in the last year
- Weekly reviews of the site readiness
- Production teams can better plan where to run productions
- Automatically map to production and analysis tools ?

The CMS Site Commissioning team

CMS Centers and Computing Shifts

