Presentazione: Alberto Salvio

From the electroweak scale to the Planck scale and beyond

 $21^{
m th}$ of December 2018

A summary of the curriculum vitae

Education

- Master in physics at Rome University "La Sapienza"
- Doctor philosophiae in elementary particle theory at SISSA (Trieste)

Previous work experience

- Postdoc at EPFL (Lausanne), IFAE (Barcelona), Scuola Normale di Pisa
- research and teaching associate at IFT and Universitad Autónoma (Madrid)
- ► Fellow at CERN

Now

University researcher (RTDb) at Rome University & INFN "Tor Vergata" ... and (until June 2019) visiting scientist at CERN.

Previous research experience (Focusing on that most relevant for ongoing personal activities) ▶ Tests of the Standard Model of elementary particles (SM) at ultrahigh energies
 BSM: I worked on famous scenarios (e.g. SUSY, extra dimensions (in Trieste, Lausanne, Barcelona, Pisa)), but also on new scenarios (in Madrid and CERN):

(Focusing on that most relevant for ongoing personal activities)

- ▶ Tests of the Standard Model of elementary particles (SM) at ultrahigh energies
 - 1. Bound on the Higgs mass (M_h) to have absolute stability of the SM vacuum for $E \leq$ Planck scale: the "stability bound" (in Pisa and Madrid)

(Focusing on that most relevant for ongoing personal activities)

- ▶ Tests of the Standard Model of elementary particles (SM) at ultrahigh energies
 - 1. Bound on the Higgs mass (M_h) to have absolute stability of the SM vacuum for $E \leq$ Planck scale: the "stability bound" (in Pisa and Madrid)
 - 2. Bound on M_h to have the Higgs as the inflaton and its possible issues (in Madrid)

(Focusing on that most relevant for ongoing personal activities)

- ▶ Tests of the Standard Model of elementary particles (SM) at ultrahigh energies
 - 1. Bound on the Higgs mass (M_h) to have absolute stability of the SM vacuum for $E \leq$ Planck scale: the "stability bound" (in Pisa and Madrid)
 - 2. Bound on M_h to have the Higgs as the inflaton and its possible issues (in Madrid)
 - 3. Gravitational and thermal corrections to SM vacuum decay (at CERN)

(Focusing on that most relevant for ongoing personal activities)

- ▶ Tests of the Standard Model of elementary particles (SM) at ultrahigh energies
 - 1. Bound on the Higgs mass (M_h) to have absolute stability of the SM vacuum for $E \leq$ Planck scale: the "stability bound" (in Pisa and Madrid)
 - 2. Bound on M_h to have the Higgs as the inflaton and its possible issues (in Madrid)
 - 3. Gravitational and thermal corrections to SM vacuum decay (at CERN)
 - But these are tests, not the commitment to the SM: well motivated new physics such as axions and right-handed neutrinos may change the story (in Madrid)

(Focusing on that most relevant for ongoing personal activities)

- ▶ Tests of the Standard Model of elementary particles (SM) at ultrahigh energies
 - 1. Bound on the Higgs mass (M_h) to have absolute stability of the SM vacuum for $E \leq$ Planck scale: the "stability bound" (in Pisa and Madrid)
 - 2. Bound on M_h to have the Higgs as the inflaton and its possible issues (in Madrid)
 - 3. Gravitational and thermal corrections to SM vacuum decay (at CERN)
 - But these are tests, not the commitment to the SM: well motivated new physics such as axions and right-handed neutrinos may change the story (in Madrid)

- BSM: I worked on famous scenarios (e.g. SUSY, extra dimensions (in Trieste, Lausanne, Barcelona, Pisa)), but also on new scenarios (in Madrid and CERN):
 - theories with total asymptotic freedom/safety (constrained by the LHC), but so far without gravity;
 Can a realistic field theory be valid up to infinite energy?

(Focusing on that most relevant for ongoing personal activities)

- ▶ Tests of the Standard Model of elementary particles (SM) at ultrahigh energies
 - 1. Bound on the Higgs mass (M_h) to have absolute stability of the SM vacuum for $E \leq$ Planck scale: the "stability bound" (in Pisa and Madrid)
 - 2. Bound on M_h to have the Higgs as the inflaton and its possible issues (in Madrid)
 - 3. Gravitational and thermal corrections to SM vacuum decay (at CERN)
 - But these are tests, not the commitment to the SM: well motivated new physics such as axions and right-handed neutrinos may change the story (in Madrid)

- BSM: I worked on famous scenarios (e.g. SUSY, extra dimensions (in Trieste, Lausanne, Barcelona, Pisa)), but also on new scenarios (in Madrid and CERN):
 - theories with total asymptotic freedom/safety (constrained by the LHC), but so far without gravity;
 Can a *realistic* field theory be valid up to infinite energy?
 - 2. classical scale invariant theories of all interactions (mainly motivated by inflation)

(Focusing on that most relevant for ongoing personal activities)

- ▶ Tests of the Standard Model of elementary particles (SM) at ultrahigh energies
 - 1. Bound on the Higgs mass (M_h) to have absolute stability of the SM vacuum for $E \leq$ Planck scale: the "stability bound" (in Pisa and Madrid)
 - 2. Bound on M_h to have the Higgs as the inflaton and its possible issues (in Madrid)
 - 3. Gravitational and thermal corrections to SM vacuum decay (at CERN)
 - But these are tests, not the commitment to the SM: well motivated new physics such as axions and right-handed neutrinos may change the story (in Madrid)

- BSM: I worked on famous scenarios (e.g. SUSY, extra dimensions (in Trieste, Lausanne, Barcelona, Pisa)), but also on new scenarios (in Madrid and CERN):
 - theories with total asymptotic freedom/safety (constrained by the LHC), but so far without gravity;
 Can a *realistic* field theory be valid up to infinite energy?
 - 2. classical scale invariant theories of all interactions (mainly motivated by inflation)

Other previous experience

(less relevant for ongoing personal activities) AdS/CFT, Lorentz (a)symmetry in QFT $\,$

Bottom-up road: models

Bottom-up road

I developed a model (SM+right-handed neutrinos + axion) [PLB (2015)] which can give

- dark matter (through axions and possibly the lightest right-handed neutrino)
- realistic neutrino oscillations (see-saw)
- ▶ a solution of the strong-CP problem (Peccei-Quinn symmetry)
- baryogenesis through leptogenesis (and its low-scale variants)
- ▶ inflation (through the Higgs or the extra scalar [Ballesteros et al, 2017])

Bottom-up road

I developed a model (SM+right-handed neutrinos + axion) [PLB (2015)] which can give

- dark matter (through axions and possibly the lightest right-handed neutrino)
- realistic neutrino oscillations (see-saw)
- ▶ a solution of the strong-CP problem (Peccei-Quinn symmetry)
- baryogenesis through leptogenesis (and its low-scale variants)
- ▶ inflation (through the Higgs or the extra scalar [Ballesteros et al, 2017])

Given these advantages I plan to

- I Study reheating in this model
- II Address the hierarchy problem. This would lead to extra states (a scalar and a new quark) that can be visible at the LHC or future colliders.

Top-down road: theories

Top-down road

Can a relativistic field theory hold up to $E=\infty$? Can it be asymptotically safe?

Top-down road

Can a relativistic field theory hold up to $E = \infty$? Can it be asymptotically safe?

Main obstacle: Gravity

The renormalizable extension of Einstein gravity (quadratic gravity)

- 1) has a <u>classical</u> Hamiltonian unbounded from below
- 2) Apparently is not asymptotically safe (when stable)

It has been shown that this problem is not a no-go theorem:

- 1) A new quantization should be used
- All couplings should flow to UV fixed points (asymptotic free/safe scenario)

Top-down road

Can a relativistic field theory hold up to $E = \infty$? Can it be asymptotically safe?

Main obstacle: Gravity

The renormalizable extension of Einstein gravity (quadratic gravity)

- 1) has a classical Hamiltonian unbounded from below
- 2) Apparently is not asymptotically safe (when stable)

It has been shown that this problem is not a no-go theorem:

- 1) A new quantization should be used
- All couplings should flow to UV fixed points (asymptotic free/safe scenario)

So I plan to

- I Study the predictions for the inflationary observable: e.g. a new isucurvature mode is predicted, but \boldsymbol{r} is suppressed.
- II New states are predicted at the scales of the LHC and future colliders (test it!). Explain the hints of new physics through the extra fields needed to "save" the SM.

