

Dr. Umberto De Sanctis

Outline

- Spent the whole career in the ATLAS Experiment
- Supersymmetry (SUSY)
 - > Searches in the dilepton channel
- > Top Physics
 - tt cross-section measurement in single lepton channel
 - W+jets background estimation
 - > Top charge asymmetry measurement
- B-physics
 - \triangleright B⁰_(d,s) $\rightarrow \mu\mu$ BR measurement
 - > Topological trigger studies
- > ATLAS upgrade activities for HL-LHC
 - > LITrack project
- ➤ NPTEV-2020 Project

- > 27 km circular collider
- \triangleright Up to 2800 bunches of 10¹¹ protons colliding in 4 points each 25 ns
- ➤ Instantaneous luminosity up to 2.5 10³⁴ cm⁻²s⁻¹
- ightharpoonup Run1 (2010-2012) and Run2 (2015-2018) collected 25 fb⁻¹ and 150 fb⁻¹ at center-of-mass energies \sqrt{s} = 7, 8 and 13 TeV

The ATLAS Experiment

- Jets + Tranverse missing energy (EM + Hadronic Calo)
- Leptons (EM Calo + muon chambers + Inner Detector)
- b-jets (IBL and Pixel Vertex Detector).

INFN

- Top physics needs high performance in reconstructing all these
 objects
 - B-physics mainly relies on muons and tracks will exploit at highest level its components.

- > 3 families of quarks and leptons: the fundamental "bricks"
- ➤ 4 types of mediators (gauge bosons) which describe the 3 fundamental interactions: strong, weak and electromagnetic
- The "newcomer": the Higgs Boson responsible for the masses of all particles in the Standard Model.

The Standard Model of Particle Physics

- > 3 families of quarks and leptons
- ➤ 4 types of mediators (gauge bosons) which describe the 3 fundamental interactions: strong, weak and electromagnetic
- The "newcomer": the Higgs Boson responsible for the masses of all particles in the Standard Model.

Bs, d > µµ BR measurement

- Flavour physics: currently ATLAS B-physics convener
- Rare but clean decay suppressed by FCNC in the SM
 - \Rightarrow BR(Bs \Rightarrow µµ) = (3.65 ± 0.23)x10⁻⁹
 - \Rightarrow BR(Bd \Rightarrow µµ) = (1.06 ± 0.09) ×10⁻¹⁰
- Sensitive to New Physics contributions through loops
- > Measurements by CMS and LHCb (combined):

BR(Bs
$$\rightarrow \mu\mu$$
) = (2.8 $^{+0.7}_{-0.6}$) ×10⁻⁹ 3.0 $^{+0.7}_{-0.6}$ ×10⁻⁹ LHCb-only (Run2)
BR(Bd $\rightarrow \mu\mu$) = (3.9 $^{+1.6}_{-1.4}$) ×10⁻¹⁰ < 3.4 ×10⁻¹⁰

8

Bs, d > µµ BR measurement

- Rare but clean decay suppressed by FCNC in the SM
 - \Rightarrow BR(Bs \Rightarrow µµ) = (3.65 ± 0.23)×10⁻⁹
 - \Rightarrow BR(Bd \rightarrow µµ) = (1.06 ± 0.09) ×10⁻¹⁰
- Sensitive to New Physics contributions through loops
- Measurements by CMS and LHCb:

BR(Bs
$$\rightarrow \mu\mu$$
) = $(2.8^{+0.7}_{-0.6}) \times 10^{-9}_{\text{(combined)}} 3.0^{+0.7}_{-0.6} \times 10^{-9}$ LHCb (Run2)
BR(Bd $\rightarrow \mu\mu$) = $(3.9^{+1.6}_{-1.4}) \times 10^{-10}$ < 3.4×10^{-10}

> Analysis strategy:

Hadronisation probabilities

$$\mathcal{B}(B_{(s)}^0 \to \mu^+ \mu^-) = N(B_{(s)}^0 \to \mu^+ \mu^-) \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)\right] \times \frac{f_u}{f_{s/d}} \times \frac{1}{\mathcal{D}_{\text{norm}}}$$

Number of Bs/Bd events from an unbinned ML fit to $m(\mu\mu)$ distribution

Reference channel: $B^{\pm} \rightarrow J/\psi K^{\pm}$ Extracted from an unbinned ML fit to $m(\mu\mu K^{\pm})$ distribution

 $\mathcal{D}_{\text{norm}} = \sum_{k} N_{J/\psi K^{\pm}}^{k} \alpha_{k} \left(\frac{\varepsilon_{\mu^{+}\mu^{-}}}{\varepsilon_{J/\psi K^{\pm}}} \right)_{k}$ Trigger categories and luminosity prescales* Acceptance and

Bs, d > µµ BR measurement

9

- BR extracted w.r.t to a well know high statistics reference channel ($B^{\pm} \rightarrow J/\psi K^{\pm}$) \rightarrow reduce systematics
- Blind analysis (e.g. the event selection and all the analysis is frozen before looking at data)
- > Di-muon low-P_T triggers
- High reduction and control of the backgrounds (BDT for combinatorial)
- ➤ Main backgrounds:
 - Combinatorial (i.e. 2 "random" muons forming a common vertex
 - Semi-leptonic decays
 - ightharpoonup e.g. b ightharpoonup c $\mu\nu$ ightharpoonup s(d) $\mu\mu\nu\nu$

Hadrons identified as muons

 \succ K/ π decays in flight

Bs, d > µµ BR measurement

- Results for full Run I + Partial Run 2 dataset (25+26 fb⁻¹)
- \rightarrow Simultaneous BR(Bs $\rightarrow \mu\mu$, Bd $\rightarrow \mu\mu$) extraction
- > Comparable precision w.r.t. CMS and LHCb despite their better m(µµ) resolution

- > BR(Bs) = $2.8^{+0.8}_{-0.7} \times 10^{-9}$ (stat. ± syst.)
 - **Evidence at 4.6σ**
- Upper limit on BR(Bd)
 placed at 2.1x10⁻¹⁰ (95%
 CLs)
 - Currently the most stringent limit

Top physics

W+jets background

- Top quark is the heaviest particle in Nature
- Its lifetime is shorter than $I/\Lambda_{QCD} \rightarrow It$ doesn't hadronise
- Possibility to study the properties of a bare quark!
- > BR(t→Wb) ~ 99%
- > Experimental signatures:
 - High-P_T jets with both light and heavy flavours HF (from b and c quark decays)
 - ightharpoonup High-P_T isolated lepton (e, μ)
 - High missing transverse momentum E^T_{MISS}

The NPTEV-2020 project

- NPTEV-2020 project: find New Physics in top events
- Several measurements foreseen.
 - > Top mass
 - ➤ CP-violation in b-quark decays in t →bW events
 - \triangleright Search for resonance X \rightarrow t \bar{t}
 - \rightarrow FCNC violating decay t \rightarrow cZ
 - > ttZ coupling measurement
- Tool: Soft Muon Tagging
 - Identify the muon from the semileptonic decays of the b quark (e.g. $b \rightarrow c\mu\nu$) in $t \rightarrow W(\rightarrow \mu\nu)b$ decay

Top mass measurement

- \triangleright Accurate measurements of top quark mass (together with M_W and M_H) crucial to test the SM
 - Compare EW fit and experimental measurements
 - Vacuum stability (i.e. UV SM completion)

Top mass with soft-muons

- Relate the top quark mass to the invariant mass constructed by the Soft Tagged μ with the e/μ from the W decay
- ➤ Not sensitive to (b)- JES → gain in combination with other measurements
- \triangleright Non isolated muons → Need ad-hoc calibration with Z and J/ψ
- b-fragmentation to be kept under control
 - ➤ Constrained with LEP Z → bb data

- Extract m(lµ) templates for several top mass points
- Fit in data the m(lµ) curve

INFN

Find the best value of the top mass

CP-violation in b-decays

- > Look for CP violation in b-semileptonic decays
- > 2 muons: one from W, one from the b-cascade
- > Count the number of same-charge/opposite-charge muons N⁺⁺, N⁻⁻, N⁺⁻, N⁻⁺
- \triangleright Build asymmetries sensible to CP violation both in B⁰-B⁰ mixing and direct b/c semileptonic decays

$$A^{SS} = \frac{P(b \to l^{+}) - P(\bar{b} \to l^{-})}{P(b \to l^{+}) + P(\bar{b} \to l^{-})} = \frac{\binom{N^{++}}{N^{+}} - \binom{N^{--}}{N^{-}}}{\binom{N^{++}}{N^{+}} + \binom{N^{--}}{N^{-}}}$$

$$A^{OS} = \frac{P(b \to l^{-}) - P(\bar{b} \to l^{+})}{P(b \to l^{-}) + P(\bar{b} \to l^{+})} = \frac{\binom{N^{+-}}{N^{+}} - \binom{N^{-+}}{N^{-}}}{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{+}) = \frac{\binom{N^{+-}}{N^{+}} - \binom{N^{-+}}{N^{-}}}{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{+}) = \frac{\binom{N^{+-}}{N^{+}} - \binom{N^{-+}}{N^{-}}}{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{+}) = \frac{\binom{N^{+-}}{N^{+}} - \binom{N^{-+}}{N^{-}}}{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{+}) = \frac{\binom{N^{+-}}{N^{+}} - \binom{N^{-+}}{N^{-}}}{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{+}) = \frac{\binom{N^{+-}}{N^{+}} - \binom{N^{-+}}{N^{-}}}{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{+}) = \frac{\binom{N^{+-}}{N^{+}} - \binom{N^{-+}}{N^{-}}}{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{+}) = \frac{\binom{N^{+-}}{N^{+}} - \binom{N^{-+}}{N^{-}}}{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{+}) = \frac{\binom{N^{+-}}{N^{+}} - \binom{N^{-+}}{N^{-}}}{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{+}) = \frac{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{+}) = \frac{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{+}) = \frac{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{-}) + P(\bar{b} \to l^{+}) = \frac{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}{\binom{N^{+-}}{N^{-}}}$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{-}) + P(\bar{b} \to l^{-}) + P(\bar{b} \to l^{-})$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{-}) + P(\bar{b} \to l^{-})$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{-}) + P(\bar{b} \to l^{-})$$

$$P(b \to l^{-}) + P(\bar{b} \to l^{-}) + P(\bar{b} \to l^{-})$$

$$P(b \to l^{-}) + P$$

- consistent with SM
- First limit on direct **CPV** in b→cX decay
- data just started

$$A_{\text{mix}}^{b\ell} = \frac{\Gamma(b \to \overline{b} \to \ell^{+}X) - \Gamma(\overline{b} \to b \to \ell^{-}X)}{\Gamma(b \to \overline{b} \to \ell^{+}X) + \Gamma(\overline{b} \to b \to \ell^{-}X)}, \qquad A_{\text{dir}}^{b\ell} = \frac{\Gamma(b \to \ell^{-}X) - \Gamma(b \to \ell^{+}X)}{\Gamma(b \to \ell^{-}X) + \Gamma(\overline{b} \to \ell^{+}X)},$$

$$A_{\text{mix}}^{bc} = \frac{\Gamma(b \to \overline{b} \to \overline{c}X) - \Gamma(\overline{b} \to b \to cX)}{\Gamma(b \to \overline{b} \to \overline{c}X) + \Gamma(\overline{b} \to b \to cX)}, \qquad A_{\text{dir}}^{c\ell} = \frac{\Gamma(\overline{c} \to \ell^{-}X_{L}) - \Gamma(c \to \ell^{+}X_{L})}{\Gamma(\overline{c} \to \ell^{-}X_{L}) + \Gamma(c \to \ell^{+}X_{L})},$$

$$A_{\text{dir}}^{c\ell} = \frac{\Gamma(b \to cX_{L}) - \Gamma(\overline{b} \to \overline{c}X_{L})}{\Gamma(\overline{c} \to \ell^{-}X_{L}) - \Gamma(\overline{b} \to \overline{c}X_{L})},$$

$$A_{\text{dir}}^{bc} = \frac{\Gamma(b \to cX_{L}) - \Gamma(\overline{b} \to \overline{c}X_{L})}{\Gamma(\overline{c} \to \ell^{-}X_{L}) - \Gamma(\overline{b} \to \overline{c}X_{L})},$$

Backup

Supersymmetry (SUSY)

SUPERSYMMETRY

Standard particles

SUSY particles

- New symmetry that associates to every SM particle a partner with different spin
- > Solution to the "naturalness/hierarchy/fine-tuning" problem
- Candidate for Dark Matter (called LSP) if R-parity conservation holds

SUSY signatures at LHC

- Assuming R-parity property conservation
- Strongly interacting sparticles (squarks, gluinos) should dominate production unless very heavy.
- Cascade decays to the stable, weakly interacting lightest neutralino follows.
- Event topology:
 - high p_T jets (from squark/gluino decay)
 - ➤ Large E_T^{miss} signature (from LSP)
 - High p_T leptons, b-jets, τ,
 jets (depending on model parameters).

A typical decay chain:

SUSY activities

- 2005-2008: Master and PhD theses at Milano University
- Inclusive and exclusive searches in final states with:
 - \triangleright 2 Opposite Sign Same Flavour (OSSF) high-P_T leptons (e, μ)
 - → High-P_T jets + High missing transverse energy E^T_{MISS}
- Sensitive to SUSY scenarios with:
 - R-Parity conservation
 - Gluinos decay chains
 - Interpreted within mSUGRA framework
- New method to estimate tt backgorund for these searches (dominant one)
- \triangleright Results with I fb⁻¹ at \sqrt{s} =14 TeV:
 - Significantly extend the discovery potential of the inclusive searches
 - Reconstruct SUSY particles kinematic properties
 (e.g. mass differences) with a precision < 2%

Top physics activities

- > 2009-2013: Postdoc at S.I.S.S.A. (Trieste): Top physics
- Phenomenological works on the spin determination for high-mass resonances and contact interactions in di-jet events
- Work in ATLAS:
 - tt production cross-section measurement in the single lepton channel with and without b-tagging
 - \rightarrow 36 pb⁻¹ at \sqrt{s} = 7 TeV \rightarrow already systematics dominated
 - Compatible with the SM predictions at NLO
 - W+jets background estimation for tt analyses in the single lepton channel
 - Developed a new data-driven method based on the W+/W- production charge asymmetry
 - Determine both overall normalisation and flavour components $(Wb\bar{b}, Wc\bar{c}, Wc$ and W+ light jets)
 - Most precise method → Adopted by all top analyses

Top charge asymmetry

anti-top

- \triangleright CDF reported a 3.4 σ excess over SM \rightarrow Started and led the activity for the two publication rounds

 LHC \downarrow to
- Top charge asymmetry A_C is a small QCD NLO effect (1.2%) present in $q\bar{q}$ /qg events. SM predicts that top and antitop have different rapidity widths $\Delta |y| \equiv |y_t| |y_{\bar{t}}|$
- > At LHC: less visible effect but much higher statistics
- \triangleright A_C measured after unfolding for detector/acceptance effects

- Most precise LHC measurement
- Inclusive and differential ATLAS measurements compatible with SM
- Comparison between ATLAS and CDF → Some model disfavoured

<u>JHEP02(2014)107</u>

Trigger & Upgrade activities

- Level-I Topological trigger
 - > Optimised, supervising a PhD student, Run-2 trigger strategies for B-physics using Level-1 muon topological info
 - \succ x3 rejection improvement \rightarrow Vital for B-physics in Run2!

- Level-I Track Project for HL-LHC
 - Goal: make a Level-I trigger decision using ID info
 - \triangleright Low latency trigger (few μ s)
 - Pattern recognition and track fitting using Associative Memory and FPGA (à-la FTK)
 - Add flexibility to the trigger system for HL-LHC
 - Development of the track fitting algorithm based on Principal Component Analysis and tracking performance studies

