Update on Monte Carlo studies for ΔE-TOF detector

Outline

- Introduction
- M&M: Experimental setup and MC
- Results
- Conclusions

Introduction

Goal:

- Compare data june 2018 with MC
- Understand data and MC in detail (today: MC)

Reminder

- ΔE-TOF detector provides:
 - Time-Of-Flight of fragments
 - TOF \rightarrow velocity β
 - Energy deposited

Bethe-Bloch (relevant terms)

BB formula → **Z** of fragment

Position (2D by orthogonal arrangement)

Methods & Materials: data

- Data were taken at CNAO in June 2018
- Goal: test particle ID
- 330 MeV/c carbon ions

Details: see Esther's presentation

Methods & Materials: MC

- Used FOOT simulation framework rotated 8 degrees. Advantage:
 - Can use existing analysis framework
 - Can easily test other angles
- Bars nr 16 corresponded to the position of the bars in the experimental setup

Bethe-Bloch-formula

First check: be sure the BB formula used in the analysis code is ok!

For Z=1 and Z=2, plot shows

- MC dE/dx, tabulated from FLUKA output, including all relevant physics
- Theoretical dE/dx from Bethe-Bloch formula included in AnaFoot
- They are perfectly superimposed!

Conclusion:

- BB formula we use in the analysis code later to extract Z later is fine!
- BB formula from slide 1 is perfectly valid up to $\beta^{\sim}0.02$
- Checked also that nuclear stopping power is not an issue until very low velocity

In the following, will try to go in steps towards what we see in the TOF

A perfect world (1)

- Perfect world = having access to the crossings in the detector:
 - Momenta in and out of scintillator
 - Positions in and out of scintillator \rightarrow get Δx
 - Masses, charges, of particles, their origin, etc
 - E_{loss} in SCN is E_{kin} (start of bar) E_{kin} (end of bar)
- Event selection
 - 1 hit in bar 1 && 1 hit in bar 2
 - 1 crossing in bar 1 and 1 crossing in bar 2
 - Particle crossing bar 1 is the same as the one in bar 2
 - (i.e., no fragmentation)
 - Enter from air, exit into air, no escape into other bars
- Energy deposit is the true kinetic energy lost in the bar!
- β calculation
 - Since Bethe-Bloch B depends on β^2 , define:

 $p_{med}^{2} = (p_{out}^{2} + p_{in}^{2})/2$

Δx=sqrt(pow((cross_xout-cross_xin),2)+ pow((cross_yout-cross_yin),2)+ pow((cross_zout-cross_zin),2));)

A perfect world (2)

- Remember: only passing fragments, perfectly clean → only electromagnetic losses are important → perfectly following the BB formula
- Physics in bar 1 and bar 2 is the same

A perfect world (2)

 Even in a perfect worlds, due to statistics, the Z determination would never be perfect

A perfect world (3)

 Even in a perfect worlds, due to statistics, the Z determination would never be perfect

A less perfect world (4)

What happens if we do not have P_{med}, but only the info in between the bas?

- Take:
 - Bar1: the P_{out} of bar 1,
 - Bar 2 the P_{in} of bar 2
- Deviation from the Bethe-Bloch function: the beta in between the bars doesn't reflect the average beta in the bar

A less perfect world

- Take:
 - Bar1: the P_{out} of bar 1,
 - Bar 2 the P_{in} of bar 2
- Z determination still fine as long as beta not too small

Closer to reality

Closer to reality: analyze SCN block

- Energy deposits: now from evstr->SCNde[i]
- Beta in each bar: from the true crossings
- Selection: as previously

MC Event selection

- 1 hit in bar 1 && 1 hit in bar 2
- 1 crossing in bar 1 && 1 crossing in bar 2
- Particle crossing bar 1 = the one in bar 2 (i.e., no fragmentation)
- Enter from air, exit into air, no escape into other bars

In these events, most energy is visible: E deposited in SCN ~E_{kin}(bar entrance)-E_{kin}(bar exit)

Closer to reality

Closer to reality: analyze SCN block

- Energy deposits: from evstr->SCNde[i]
- Beta: from TOF
 - Time stamp: from hit in bar
- Selection: as previously

MC Event selection

- 1 hit in bar 1 && 1 hit in bar 2
- 1 crossing in bar 1 && 1 crossing in bar 2
- Particle crossing bar 1 = the one in bar 2 (i.e., no fragmentation)
- Enter from air, exit into air, no escape into other bars

Effect of 'wrong' beta becomes visible (compare with slide 11)

Comparison data-MC

Closer to reality: analyze SCN block

- Energy deposits: from evstr->SCNde[i]
- Beta: from TOF
 - Time stamp: from hit in bar
- Selection: as previously

MC Event selection

- 1 hit in bar 1 && 1 hit in bar 2
- 1 crossing in bar 1 && 1 crossing in bar 2
- Particle crossing bar 1 = the one in bar 2 (i.e., no fragmentation)
- Enter from air, exit into air, no escape into other bars

Bar 1: comparison ok. Bar 2: Energy too high \rightarrow Z too high

Comparison data-MC

Closer to reality: analyze SCN block

- Energy deposits: from evstr->SCNde[i]
- Beta: from TOF
 - Time stamp: from hit in bar
- Selection: as previously

MC Event selection

- 1 hit in bar 1 && 1 hit in bar 2
- 1 crossing in bar 1 && 1 crossing in bar 2
- Particle crossing bar 1 = the one in bar 2 (i.e., no fragmentation)
- Enter from air, exit into air, no escape into other bars

Bar 1: comparison ok. Bar 2: Energy too high \rightarrow Z too high

Comparison data-MC

Closer to reality: analyze SCN block

- Energy deposits: from evstr->SCNde[i]
 - Summed energies
- Beta: from TOF
 - Time stamp: from **first** hit in bar

MC Event selection

- >=1 hit in bar 1 && >=1 hit in bar 2
- >=1 crossing in bar 1 && >=1 crossing in bar 2

Still under investigation

Software status

- First quick tries to install SHOE failed
- Account on TIER3 to facilitate collaboration with Bologna
- Good news! Niccolò Camarlinghi will help with implementation of TOF information in SHOE
- We plan to work with Matteo Franchini to implement relevant information

Conclusions

- Some final issues left to understand in MC (maybe with Giuseppe)
- A few small problems found
 - momenta in and out of SCN are not equal to crossing momenta
 - Old region in crossings not available
- Extend to smaller angles (more Z values)
- Prepare data taking next week CNAO (10-11 December)
- Focus more on SHOE

A perfect world (4)

What happens if I calculate β starting from $P_{med}^{=(P_{x}, P_{y}, P_{z})}$ with $p_{x,in}=(p_{x,in}+p_{x,out})/2$, $p_{y,in}=(p_{y,in}+p_{y,out})/2$ and $p_{z,in}=(p_{z,in}+p_{z,out})/2$ Conclusion: stick with $p_{med}^{2}=(p_{out}^{2}+p_{in}^{2})/2$