Model the response: from energy deposit to S1 and S2

A toyMC is not enough (need to consider effects of beam width, TPC size, multiple scatters, accidental coincidence.

Start from an actual simulation (3E8 neutrons? in a 3 deg cone). CHECK beam-time conversion

Selection based on TOF:
$35 \mathrm{~ns}<\mathrm{TPC}$ time < 41 ns \&\&
20 ns < ND time - TPC time < 26 ns

Determine energy deposited in the TPC for TPC-ND coincidence events. Neglect coincidence with Si for the moment.

GOAL is to store the distribution of the azimuthal angle of the recoiling ${ }^{40} \mathrm{Ar}$ (angle with respect to the drift field) vs ${ }^{40} \mathrm{Ar}$ recoil energy.

same color scheme maintained when looking at TPC-LSCi coincidence

Model the response: from energy deposit to S1 and S2

energy in TPC before and after coincidence and TOF selection

==> use the join energy-angle 2D distributions from MC as PDF for the following

What next

1）Energy in TPCーーー LEーーーー from $A R I S$ ーーーー＞Visible Energy

2）Visible energy Model from $\operatorname{DS} 50$ and $A R I S$ 근 ions and excitons $\left(\mathrm{W}=19.5 \mathrm{eV}, \mathrm{N}_{\mathrm{ex}} / \mathrm{N}_{\mathrm{i}}=1\right)$
3）Free ions - Recombination from $A R I S ~->$ ions \downarrow excitons $\uparrow \quad$ recombination（S1）

Surviving ions $-ー->$ S2

？
？

fluctuations
？

1) True energy to visible energy.

Use Leff from ARIS measurement

0.315 at 70 keV

2) Model from DS50 and ARIS

Considerations:

- Recombination R (can be extracted from ARIS) is the parameter with largest effect on S2.
- Effect of θ is invented: do we reproduce SCENE?
- Fluctuations and correlations are assumed (can not establish with DS50 or ARIS)
- S2 is not tuned in DS50. The only handle is the ARIS/DS50 cross calibration.

$N Q$	number of produced quanta
Ni	number of e-/ion pairs
Nex	number of excitons
a	Nex/Ni (assumed 1 for NR)
$\mathrm{N} Y$	Number of scintillation photons
$\mathrm{Ne}-$	Number of free electrons

NQ number of produced quanta
Ni number of e-/ion pairs
Nex number of excitons
a Nex/Ni (assumed 1 for NR)
N Number of scintillation photons
Ne - Number of free electrons

3A) Recombination from ARIS

- Recombination R (can be extracted from ARIS)
$\mathrm{S} 1 / \mathrm{S} 1_{0}=(1+\mathrm{R}) /(1+\mathrm{Nex} / \mathrm{Ni})=0.95 \quad==>\quad \mathrm{R}\left(\mathrm{T}_{\perp} \mathrm{E}\right) \sim 0.9$

3A) Effect of θ - invented to reproduce SCENE

- Effect of θ is invented: do we reproduce SCENE.

For $A=0.08$ the $T_{\|} E$ vs $T_{\perp} E$ effect is \sim as observed in SCENE

For T//E, recombination is 98\% of e-/ion pair. A 10\% increase in the A parameter (0.08 to 0.09) implies a factor of ~ 2 less S 2 signal!

4) Detector resolutions.

This input is easy to adjust, based on the measured detector performance.
Do we have reference values?

$$
\begin{gathered}
\text { Excitons } \quad-ー->\mathbf{S 1} \\
\mathrm{g} 1 / \text { light yield (PE / ph) ? } \\
\mathrm{S} 1 \text { resolution ? }
\end{gathered}
$$

g2 / ionization yield (PE/e-) ?
S2 resolution ?

Surviving free e- - - -> S2

S 1 LY is ~ $8 \mathrm{PE} / \mathrm{keV}$? ==> g1 ~ 0.2

$\mathrm{S} 1=$ Gaus ($\mathrm{N} \gamma \times 0.2$, sigma) sigma is sqrt($\left.g 1^{*}(1-g 1)^{*} N \gamma+\sigma 1^{2 *} N \gamma^{*} g 1\right)$
$\sigma 1 ~ 2$ to match ReD data (peak RMS ~ 10\%@ 60 keV)

$$
\text { Use g2 = } 10 \text { PE / e- }
$$

S2 resolution?

$$
\text { Use } \sigma 2 \text { ~ } 2
$$

Use Gaus (g2 x Ne, $\sigma 2 \times \sqrt{ }\left(\mathrm{g} 2^{*} \mathrm{Ne}\right)$)

[^0]
Validation of the Model?

Ionization yield from ARIS/DS50. Expect 1.2 to $1.6 \mathrm{e}-/ \mathrm{keV}_{\mathrm{NR}}$ at $70 \mathrm{keV} \mathrm{NR}^{\mathrm{N}}$

Consistent

According to this model:

Test
$<N_{Q}>=\left(E_{\text {wis }} / 19.5 \mathrm{eV}\right)$
$N_{i}=N_{Q} /(1+\alpha)=N_{Q} / 2$
$N_{\text {ex }}=N_{Q}-N_{i}$
$\mathrm{Ne}-=\mathrm{Ni} \times(1-R)=N Q / 2 \times(1-R)$
$N e-/ E_{\text {wis }}=N Q / 2 \times(1-R) / E_{\text {wis }}$
(20)

Recombination in ARIS is 0.9
(geometry selects $T_{\perp} E \ldots$...)

Some examples

S1 spectra for 5 LSci

With arbitrary large statistics

From a gaussian + bg fit of the peaks:
Compatible with SCENE

Ionization yield for 3 LSCi

According to DS50, the avg value is $1.4 \pm 0.2 \mathrm{e}-/ \mathrm{keV}_{\mathrm{NR}}$

S2/S1 vs S1

S2/S1 vs S1 changing fluctuations and resolutions

Preliminary distance estimate

A relative estimate of the separation between the peaks can be done using a fit of $T / / E$ and $T \perp E$ peaks with bivariate gaussians. Then take the product of the normalized functions and integrate. A more refined approach will include all the peaks and a LL.

The directional effect on S2/S1 vs S1

S2vss1_1

16

$\mathrm{S} 2 / \mathrm{S} 1$ vs S 1 as a function of g 2

Conclusions

Tool is basically ready, may need some refinement

Normalize to correct statistics and evaluate the impact

Develop analysis and define strategy

[^0]: g1 light detection probability
 g2 multiplication in gas
 $\sigma 1$ S1 resolution other than binomial (SPE, geometry...)
 02 S2 resolution (multiplication, SPE, geometry, e- lifetime?...)

