Study of W background to top pair production cross-section in ATLAS at the LHC

MARIA ILARIA BESANA INFN&UNIVERSITÀ DEGLI STUDI DI MILANO

On behalf of the ATLAS collaboration

Outline

□ Introduction:

- □ Motivations for top quark studies at LHC
- □ Cross section of top quark pair production

□ How we can select top quark pair events:

Background contamination

□ Data-driven estimation of W+jets background:

- Description of the method
- □ Main sources of uncertainty
- Results on background estimation

Conclusion

Why is top quark so interesting?

3

• Properties:

- Large mass: interact heavily with the Higgs sector
 - => higgs boson can be produced in association with a top quark pair
- Short lifetime: top quark decays before hadronisation
 => study the properties of a « bare » quark (top quark mass)

• Shopping list:

- Explore properties: consistency test of the Standard Model
 - cross section
 - mass
 - charge
 - decay modes
 - top&W polarisations
- Search for new physics: top is a BKG for New Physics searches, need to be understood
- In addition at LHC: top quark is a tool for detector commissioning

In this talk I'll focus on top quark pair production cross section measurement

Top quark pair decay modes

Semileptonic decay is the most studied because of :
o good BR
o possibility of top quark mass reconstruction

• clear signature

Introduction Top quark pair event selection W+jets estimation Conclusion

Bari, 01/10/2009

Introduction Top quark pair event selection W+jets estimation Conclusion

Bari, 01/10/2009

Method for W+jets background estimation I

• W/Z ratio is predicted with much smaller uncertainty [1-2]

W /Z ratio as a function of Njet (jet p_T > 20GeV) normalized at $\sigma_{W+1jet} / \sigma_{Z+1jet}$. Results are shown for muon and electron channel, using both Alpgen and Pythia samples.

Difference between Alpgen and Pythia predictions is ~10% (<< 100%!)

Q Z can be selected with higher purity than W even at high jet multiplicity

[1] Phys. Lett B224 (1989) 237.[2] Phys. Rev. D68 (2003) 033014

Method for W+jets background estimation II \$Thus we predict W+jets as: $W^{SR} = C_{MC} * Z^{SR} * (W^{CR}/Z^{CR})$, measured from data Estimated from MC: $C_{MC} = (W^{SR}/W^{CR})_{MC} * (Z^{CR}/Z^{SR})_{MC}$

\Box C_{MC} = coef < 1 because of mass difference for W and Z

- □ SR = signal region: tt_{bar} commissioning analysis cuts (4 jets p_T >20 GeV, 3 of them p_T >40 GeV)
- \Box CR = control region (exactly one jet of $p_T > 20$ GeV)

Main sources of uncertainty:

- \Box uncertainty on Monte Carlo predictions on C_{MC}
- □ statistical limitation at 200 pb⁻¹
- uncertainty on purity of control samples

$Z \rightarrow$ ee control sample: control and signal like region

Process	Control region (200 pb ⁻¹)	Signal region (200 pb ⁻¹)	
Z (ee)	10210	82	
Ζ (μμ)	0.0	0.0	
Ζ(ττ)	0.1	0.1	
W	6.0	0.0	
tī	8.4	2.8	
Single top	2.9	0.0	
Wbb	0.0	0.0	
WW+WZ+ZZ	24.9	0.5	
QCD	110	0.4	

ATLAS Work in Progress

Simulation

□ **Statistical uncertainty** is negligible for CR (~ 1%), but is important for SR (~ 11%) **Z** events can be selected with **high purity**:

- \Box ~1% in 1 jet region
- \Box <4% in signal like region

Bari, 01/10/2009

Zee

acd

Diboson(WW+WZ+ZZ W + ZTT + Single to

$Z \rightarrow \mu\mu$ control sample: control and signal like region

Pocess	$\begin{array}{c} \textbf{Control region} \\ (200 \text{ pb}^{-1}) \end{array}$	Signal region (200 pb ⁻¹)
Ζ (μμ)	15750	150
Z (ee)	0.0	0.0
Ζ(ττ)	0.9	0.0
W	0.0	0.0
tī	10.5	5.0
Single top	2.3	0.0
Wbb	0.0	0.0
WW+WZ+ZZ	40.0	1.0
QCD	≤50.0	≤0.5

Statistical uncertainty is negligible for CR (<1%), but is important for SR (~ 8%)
 Z events can be selected with high purity:

- \Box ~0.1% in 1 jet region
- \Box <4% in signal like region

Bari, 01/10/2009

W control region					
Process	Electron Analysis (200 pb ⁻¹)	Muon Analysis (200 pb ⁻¹)	□ Statistical error is negligible both in		
W(ev)	148700	0.0	electron and muon		
W(μν)	43	190300	channel (< 1%)		
W(τν)	5570	6820	Not negligible OCD		
Z(ee)	1197	0.0	contamination both in		
Ζ (μμ)	1.0	8066	electron and muon chan.		
Ζ(ττ)	879	1130	50% uncertainty		
tī	203	241	on QCD		
Single top	272	308	1		
Wbb	97	119	Frror from background.		
WW+WZ+ZZ	427	557	$\square ~17\%$ electron chan.		
QCD	42000	31000	□ ~11% muon chan.		
Introduction Top	o quark pair event selection W+j	ets estimation Conclusion	Bari, 01/10/2009		

Uncertainty on C_{MC}

(12)

Values of C_{MC} obtained for Alpgen and Pythia samples. The error depends on available Monte Carlo statistic

	Electron Analysis	Muon analysis	Combined	
Alpgen	1.00±0.04	0.92±0.04	0.96±0.03	
Pythia	0.80±0.06	0.89 ± 0.05	0.85 ± 0.04	
Systematic uncertainty of 12%.				

This systematic could improve using first data: possibility of tuning Monte Carlo generators.

Conclusion

13

Final uncertainties:

Source of uncertainty	Electron Analysis	Muon analysis	
Statistical for 200 pb-1	11.3 %	8.3%	
Purity of control region W sample	17.0%	12.7%	
Monte Carlo correction factor	12.1%	12.1%	
Total uncertainty	23.7%	19.3%	

W+jets background can be estimated from Z+jets with a total uncertainty of ~20% →~ 10% uncertainty on top quark pair cross section.