Measurement of the $Z \rightarrow \tau \tau$ decay with the ATLAS detector at 10 TeV

Daniele Capriotti

Max Planck Institut fuer Physik Werner Heisenberg Institut Muenchen, 80805, Germany capriott@mppmu.mpg.de

Società Italiana di Fisica XCV Congresso Nazionale Bari, 28 Settembre - 3 Ottobre, 2009

Introduction

Motivation for $Z \to \tau \tau$ in early data:

- \rightarrow unbiased source of τ -jets for calibration
- \rightarrow cross section measurement of SM process
- $\rightarrow\,$ background for new particle searches (MSSM or SM Higgs)
- Several groups inside the ATLAS Collaboration have been working on this topic previously: Milano, Freiburg, Cracow and Pennsylvania.
- Analysis based on Atlas notes with $14 \ TeV$ data: presented analysis performed with $10 \ TeV$ in order to deal with early data (100 pb^{-1}).

... concerning the $Z \rightarrow \tau \tau$ analysis:

- cross section at 10 TeV: $\sigma(pp \to Z) \cdot BR(Z \to \tau\tau) \simeq 1.1 \ nb$ (LO)
- τ mass = 1.777 GeV, τ mean lifetime = 2.9 \cdot 10⁻¹³.
- τ leptonic decay: $\rightarrow l\nu_l\nu_\tau$ (35 %)
- τ hadronic decay: $\rightarrow had \nu_{\tau}$ (65 %)
- $Z \to \tau \tau$ decays:
 - leptonic decay: BR = $(0.35)^2 \simeq 12 \%$
 - semileptonic decay: BR = $2 \cdot (0.35) \cdot (0.65) \simeq 46 \%$
 - hadronic decay: BR = $(0.65)^2 \simeq 42$ %

Introduction

Motivation for $Z \to \tau \tau$ in early data:

- $\rightarrow\,$ unbiased source of $\tau\text{-jets}$ for calibration
- \rightarrow cross section measurement of SM process
- $\rightarrow\,$ background for new particle searches (MSSM or SM Higgs)
- Several groups inside the ATLAS Collaboration have been working on this topic previously: Milano, Freiburg, Cracow and Pennsylvania.
- Analysis based on Atlas notes with $14 \ TeV$ data: presented analysis performed with $10 \ TeV$ in order to deal with early data (100 pb^{-1}).

... concerning the $Z \to \tau \tau$ analysis:

- cross section at 10 TeV: $\sigma(pp \to Z) \cdot BR(Z \to \tau \tau) \simeq 1.1 \ nb$ (LO)
- τ mass = 1.777 $GeV,\,\tau$ mean lifetime = 2.9 \cdot $10^{-13}~s$
- τ leptonic decay: $\rightarrow l\nu_l\nu_\tau$ (35 %)
- τ hadronic decay: $\rightarrow had \nu_{\tau}$ (65 %)
- $Z \to \tau \tau$ decays:
 - leptonic decay: BR = $(0.35)^2 \simeq 12$ %
 - semileptonic decay: BR = $2 \cdot (0.35) \cdot (0.65) \simeq 46 \%$
 - hadronic decay: BR = $(0.65)^2 \simeq 42 \%$

EVENT SELECTION

QCD FACTORIZATION

CONCLUSION

The ATLAS detector at LHC

TauJet Reconstruction in ATLAS

The reconstruction of tau leptons is understood as a reconstruction of the hadronic τ -decay modes.

Track seed Algorithm

- **(**) seed track with $p_T > 6 \ GeV$ with quality criteria,
- association with other tracks in $\Delta R < 0.2$ with quality criteria,
- \bigcirc total charge |Q| = 1.
- energy flow algorithm

Calo seed Algorithm

- 1 TopoJet with $E_T > 10 \ GeV$,
- **2** tracks associated if $\Delta R < 0.3$, passing minimal quality criteria,
- energy calculation summing the weighted cells in $\Delta R < 0.4$

Calo + **Track seeds** matched if $\Delta R < 0.2$

Tau Identification: cut-based

- "Safe-variables" to identify τ 's in the early data (Safe \Rightarrow small sensitivity to systematic uncertainties).
- not used variables based on: precision tracking, π^0 reconstruction ...

Variables for "Safe ID Cut"

- \Rightarrow at least Calo Seed:
 - electromagnetic radius R_{em} ۰
 - transverse energy width in the η strip laver
 - isolation in the calorimeter
 - Ratio of EM energy and total energy
- \Rightarrow only Calo+Track Seed:
- \rightarrow Width of track momenta

Ratio E_T and p_T of the leading track

- Ratio of EM energy and the total p_T of \rightarrow tracks
- \rightarrow Ratio of hadronic energy and the total p_T of tracks

Safe cut efficiency and QCD dijet rejection

 $\epsilon_{signal} = \frac{(\text{true } \tau_{jet}\text{'s}) \text{ matched with (reconstructed } \tau_{jet}\text{'s after ID cuts})}{\text{true } \tau_{jet}\text{'s in same kinematic range}}$

 $r_{jet} = \frac{\text{reconstructed } \tau_{jet}\text{'s (before ID cuts) matched to jets}}{\text{reconstructed } \tau_{jet}\text{'s (after ID cuts) matched to jets}}$

- tight, medium, loose cuts corresponding to 0.3, 0.5, 0.7 identification efficiency
- Identification performed for $5 p_T$ bins (10-25 GeV, 25-45 GeV, 45-70 GeV, 70-100 GeV, > 100 GeV) separately for 1-prong or 3-prong canditates.

"Safe Cut" with (Calo+Track) seed

Selection of the $Z \to \tau \tau \to lh$ signature

Signal and Background for the $Z \to \tau \tau$ Analysis at 10 TeV

	σ (nb)	ϵ_{filter}	Nr. events for 100 pb^{-1}	Nr. MC events	weight*
$Z \rightarrow \tau^+ \tau^-$	1.128 (LO)	1	112800	998671	0.11
$Z \rightarrow e^+e^-$	1.144 (LO)	0.96	109824	399197	0.27
$Z \rightarrow \mu^+ \mu^-$	1.144 (LO)	0.96	109824	498002	0.22
$W \rightarrow e\nu_e$	11.765 (LO)	0.88	103532	1572584	0.66
$W \rightarrow \mu \nu_{\mu}$	11.765 (LO)	0.88	1035320	1573696	0.66
$W \rightarrow \tau_{lep} \nu_{\mu}$	4.148 (LO)	0.87	360876	389053	0.93
$W \rightarrow \tau_{had} \nu_{\mu}$	7.690 (LO)	1	769000	399882	1.92
tī	0.374 (NLO)	0.55	20570	478694	0.04
Full j1	$8.668 \cdot 10^{5}$	1	86.7.109	997956	86857
Full j2	$5.601 \cdot 10^4$	1	5.6.109	979316	5719
Full j1 (1e filter)	$8.668 \cdot 10^{5}$	$1.09 \cdot 10^{-3}$	94.5.106	199776	473
Full j2 (1e filter)	$5.601 \cdot 10^4$	$5.45 \cdot 10^{-3}$	30.5.106	199754	153
Full j1 (1 μ filter)	$8.668 \cdot 10^{5}$	$1.02 \cdot 10^{-3}$	88.4.106	199707	443
Full j2 (1 μ filter)	$5.601 \cdot 10^4$	$5.11 \cdot 10^{-3}$	28.6.106	196130	146

*weight = Nr. events for 100 pb^{-1} / Nr. MC events

Figure: Feynman diagrams for: $Z \to \tau \tau$ LO (left), $W \to l\nu_l$ LO (center), $t\bar{t}$ LO (right)

Final selection criteria for analysis

 \Rightarrow Trigger: electron with $p_T > 10 \ GeV$ or muon with $p_T > 10 \ GeV$

 \Rightarrow Preselection:

- → "Medium-ID" Electrons: $p_T > 15 \ GeV$, $|\eta| < 2.5$, E_T (in cone $\Delta R = 0.30$) < 4.1 GeV
- → "Combined" muons: $p_T > 15 \ GeV$, $|\eta| < 2.5$, E_T (in cone $\Delta R = 0.30$) < 3.2 GeV, nb tracks(in cone $\Delta R = 0.40$) < 2
- → **TauJets**: $p_T > 20 \ GeV$, $|\eta| < 2.5$, |Q| = 1, (Calo+Track) seed and "Safe cut"-Tight, remove overlap(taujet, e-medium/ μ -combined, 0.30), $E_{T,had}/p_T > 0.1$
- \Rightarrow Selection:
 - Combining 1 taujet and 1 lepton (e,μ) with opposite charge (OS)
 - Cut on the transverse invariant mass $m_T^{lep,miss} = \sqrt{2p_T^{lep}E_T^{miss}(1-\cos\phi_{lep,miss})}$
 - $\bullet\,$ Cut on the ΔR between lepton and taujet
 - Cut on the maximum p_T of the lepton
 - No QCD background event survive after selection due to low statistics of the sample
- \Rightarrow Factorization of the QCD backround
 - Background control with same-sign $(\tau, \text{ lepton})$ selection (SS).

Transverse Invariant Mass and Distance between Visible Partcles

• Transverse Invariant Mass: $m_T < 35 \ GeV$

Electron+TauJet

normalized to 100 pb ATLAS Work in Progre 00 → µµ $W \rightarrow \mu v$ 80 $W \rightarrow \tau lepv$ $\rightarrow \tau had$ 60 40 20 0 20 40 60 80 100 Mr (GeV) 0

Muon+TauJet

• Distance between the two visible particles: $2.14 < \Delta R_{lep,\tau jet} < 4.14$

Muon+TauJet

Factorization of the QCD backround

Due to low MC statistics for QCD background, its contribution has to be estimated from factorization procedure. Procedure:

- \blacksquare Performing the previous analysis with no Safe ID cuts on $\tau\text{-jets}$ and avoiding lepton isolation
- \bigcirc Use SS sample with this loosened selection and extrapolate to OS with standard analysis cuts, by multiplying with appropriate "Safe" τ -tight and lepton isolation efficiencies
- ⇒ the number of expected events rescaled by factorization efficiencies is compatible with number of events predicted by MC when loose τ -ID cuts are applied
- \Rightarrow good agreement between the number of Opposite Sign events and Same Sign events, as expected for the dijet background.

Results for the $Z \rightarrow \tau \tau \rightarrow e \tau_{jet}$ analysis

Number of events shown after trigger selection [trigger efficiency in brackets]

	$Z \rightarrow \tau^+ \tau^-$	$Z \rightarrow e^+e^-$	$W \rightarrow e\nu$	$W \rightarrow \tau_l \nu$	$W \rightarrow \tau_h \nu$	tī	QCD
Presel $1e+1\tau_{jet}$	508 ± 8	746 ± 14	764 ± 22	60 ± 7	6 ±3	80 ± 2	1759 ± 256
Opposite Sign (OS)							
$1e+1\tau_{jet}$	497±7	668 ± 14	567 ± 19	47 ± 7	4±3	69 ± 2	908 ± 134
$m_T^{e,miss} < 35 \ GeV$	457 ± 7	511 ± 12	78 ± 7	31 ± 5	4 ± 3	14 ± 1	885 ± 130
$2.1 < \Delta R < 4.1$	415 ± 7	464 ± 11	61 ± 6	23 ± 5	4 ± 3	6.6 ± 0.5	714 ± 105
$p_T^{ele} < 35 \text{ GeV}$	385 ± 7	182 ± 7	49 ± 6	19 ± 4	4±3	2.9 ± 0.3	700 ± 103
$p_T^{\tau jet} < 60 \text{ GeV}$	380 ± 6	161 ± 7	45 ± 5	17 ± 4	4 ± 3	2.4 ± 0.3	667 ± 97
$35 < M_{vis} < 80 ~GeV$	369 ± 6 [0.97]	24±3 [1]	38 ± 5 [1]	15 ± 4 [1]	4±3 [1]	1.5 ± 0.3 [1]	$550 \pm 80 \ [0.99]$
Same Sign (SS)							
$1e+1\tau_{jet}$	10 ± 1	78 ± 5	197 ± 11	13 ± 3	2 ± 2	11 ± 1	850 ± 126
$m_T^{e,miss} < 35 \ GeV$	9 ± 1	61±4 [18 ± 3	6 ± 2	<1.6	2.8 ± 0.3	831 ± 123
$2.1 < \Delta R < 4.1$	7±1	44 ± 3	13 ± 3	3 ± 2	<1.6	1.3 ± 0.2	654 ± 98
$p_T^{ele} < 35 \text{ GeV}$	7±1	16 ± 2	10 ± 3	3 ± 2	<1.6	0.4 ± 0.1	639 ± 96
$p_T^{\tau jet} < 60 \text{ GeV}$	6 ± 1	15 ± 2	10 ± 3	3 ± 2	<1.6	0.4 ± 0.1	610 ± 91
$35 < M_{vis} < 80 ~GeV$	6 ± 1 [1]	7±1 [1]	7±2 [1]	3 ± 2 [1]	<1.6	0.3 ± 0.1 [1]	$505 \pm 75 [0.99]$

Electron+TauJet Opposite Sign

Electron+TauJet Same Sign

Results for the $Z \rightarrow \tau \tau \rightarrow \mu \tau_{jet}$ analysis

Number of events shown after trigger selection [trigger efficiency in brackets]

	$Z \rightarrow \tau^+ \tau^-$	$Z \rightarrow \mu^+ \mu^-$	$W \rightarrow \mu \nu$	$W \rightarrow \tau_l \nu$	$W \rightarrow \tau_h \nu$	tī	QCD
Presel $1\mu+1\tau_{jet}$	613 ± 8	134 ± 5	901 ± 24	57 ± 7	<1.6	106 ± 2	2685 ± 407
Opposite Sign (OS)							
$1\mu+1\tau_{jet}$	602 ± 8	96 ± 5	674 ± 21	44 ± 6	<1.6	91 ± 2	1373 ± 208
$m_T^{\mu, miss} < 35 \text{ GeV}$	540 ± 8	52 ± 3	66 ± 7	29 ± 5	<1.6	17 ± 1	1317 ± 199
$2.1 < \Delta R < 4.1$	492 ± 7	47 ± 3	53 ± 6	24 ± 5	<1.6	9 ± 1	1062 ± 162
$p_T^{ele} < 35 \text{ GeV}$	457 ± 7	18 ± 2	40 ± 5	21 ± 4	<1.6	4.2 ± 0.4	1049 ± 159
$p_T^{\tau jet} < 60 \text{ GeV}$	452 ± 7	17 ± 2	37 ± 5	20 ± 4	<1.6	3.3 ± 0.4	972 ± 146
$35 < M_{vis} < 80 ~GeV$	440 ± 7 [0.86]	13 ± 2 [0.93]	30 ± 4 [0.97]	18 ± 4 [0.95]	<1.6	2.2 ± 0.3 [1]	$771 \pm 114 [0.80]$
Same Sign (SS)							
$1\mu+1\tau_{jet}$	11 ± 1	38 ± 3	226 ± 12	13 ± 3	<1.6	14 ± 1	1312 ± 201
$m_T^{\mu,miss} < 35 \text{ GeV}$	9 ± 1	16 ± 2	22 ± 4	4 ± 2	<1.6	2.6 ± 0.3	1254 ± 191
$2.1 < \Delta R < 4.1$	7±1	10 ± 1	17 ± 3	2 ± 1	<1.6	1.33 ± 0.2	1014 ± 156
$p_T^{ele} < 35 \text{ GeV}$	6±1	5 ± 1	12 ± 3	2 ± 1	<1.6	0.5 ± 0.1	1000 ± 153
$p_T^{\tau jet} < 60 \text{ GeV}$	5 ± 1	5 ± 1	11 ± 3	2 ± 1	<1.6	0.4 ± 0.1	921 ± 140
$35 < M_{vis} < 80 ~GeV$	5 ± 1	4±1 [1]	8±2 [1]	2 ± 1 [0.67]	<1.6	0.3 ± 0.1 [1]	$745 \pm 112 [0.80]$

Muon+TauJet Opposite Sign

Muon+TauJet Same Sign

- Trigger-aware $Z\to\tau\tau$ analysis performed with "Safe Cut"-Tight τ selection, optimized for early data (100 $pb^{-1})$
- QCD jet contribution taken into account by means of the cut factorization
- SS sample shown to be a reliable control data sample, which can be used for QCD background estimation from real data

... to do

- Optimization of the QCD factorization: event-wise factorization of the QCD background (to account for the p_T dependence of the lepton isolation efficiency and τ rejection)
- further optimization of analysis selection cuts
- systematic effects
- extension to $Z \to \tau \tau + \text{jets}$

Reference

- ATL-PHYS-INT-2009-005: $Z\to \tau^+\tau^-$ in first ATLAS data (D. Cavalli, C. Pizio)
- ATL-PHYS-INT-2009-019: Prospects for physics measurements with the $Z \rightarrow \tau \tau(e, \tau_{had})$ process for 100 pb^{-1} with the ATLAS detector (Anna Kaczmarska, Elzbieta Richter-Was)
- ATL-PHYS-INT-2009-044: A Selection Strategy for $Z \to \tau \tau \to \mu \tau_h$ with the First 100 pb^{-1} from ATLAS (Ryan D. Reece, H. H. Williams)

Backup Slides

- Electron Reconstruction in ATLAS
- Muon Reconstruction in ATLAS
- Safe Cut Variables
- Overlap Removal
- Electron Veto
- Visible Invariant Mass and Collinear Approximation
- Factorization of the QCD Background

Electron Recontruction

Different reconstruction algorithms: Calo seed or Track seed

- Calo Seed: starts from clusters reconstructed in the calorimeters and then builds the identification variables based on info from the inner detector and EM calorimeters
- Track Seed: selects good-quality tracks matching a relatively isolated deposition of energy in the EM calorimeters. The identification variables are then calculated in the same way as for the Calo Seed algorithm

The standard identification of high- p_T electrons is based on many cuts which can all be applied indipendently. These cuts have been optimized in up to seven bins in η and six bins in p_T .

Definition of 3 different cuts:

- Loose simple electron identification based only on limited calorimetric info. Cuts applied on the hadronic leakage and on shower-shape variables, derived from the middle layer of the EM calo
- Medium same as loose but adding cuts on the strips in the first layer of EM calo and on the tracking variables
- Tight use of particle identification tool. Cutting on more variables than the Medium case.

Muon Recontruction

Different strategies, corresponding to different ways to combine data from more ATLAS subdetectors:

- standalone reconstruction algorithms: tracks from the Muon Spectrometer backtracked to the interaction point
- combined reconstruction algorithms: tracks from the Inner Detector combined with full Muon Spectrometer tracks
- segment tagging algorithms: tracks from the Inner Detector extrapolated to the Muon Spectrometer and combined with segments reconstructed in Muon Spectrometer stations
- calorimeter tagging algorithms: tracks from the Inner Detector extrapolated through the Calorimeters and combined with energy deposits

Safe cut variables: signal and QCD background

Track+Calo based safe cuts (8 variables for 1 prong)

Reconstructed taujets matched with truth for 1-p taujets

Safe cut variables: signal and QCD background

Track+Calo based safe cuts (9 variables for 3 prong)

Reconstructed taujets matched with truth for 3-p taujets

Safe cut efficiency VS. jet rejection

Efficiency VS. Rejection plot using τ -jet with p_T > 20 GeV

Overlap Removal with leptons

- Remove Overlap if $\Delta R < 0.3$ with combined muons and (tight or medium or loose) electrons.
- τ -efficiency reduced if overlap with loose electrons. No changing in efficiency if medium or tight electrons are used for overlap removal
- Using overlap with medium electrons for the analysis

*Plot with "safe cut"-tight $\tau\text{-jets}$ and no electron veto.

Fake τ -jets from electrons

- \bullet electrons can be reconstructed as 1-prong $\tau\text{-jets}$
- electrons interact strongly in the e.m. calorimeter, so the ratio $E_{T,hadcalo}/p_{T,leadingtrack}$ should be low.

"Electro veto": ratio $E_{T,hadcalo}/p_{T,leadingtrack} > 0.1$ for the analysis.

QCD FACTORIZATION

CONCLUSION

Final selection criteria for analysis

Medium Electrons

- $p_T > 15 \ GeV$
- $|\eta| < 2.5$
- $E_T(\Delta R = 0.30) < 4.1 \ GeV$

Combined muons

- $p_T > 15 \ GeV$
- $\bullet \ |\eta| < 2.5$
- $E_T(\Delta R = 0.30) < 3.2 \ GeV$
- nb tracks($\Delta R = 0.40$) < 2

TauJets

- $p_T > 20 \ GeV$
- $|\eta| < 2.5, |Q| = 1$
- (Calo+Track) seed and "Safe cut"-Tight
- remove overlap(taujet, e-medium/μcombined, 0.30)
- $E_{T,had}/p_T > 0.1$

Efficiency after selection criteria on the left

Final selection criteria for analysis

Medium Electrons

- $p_T > 15 \ GeV$
- $|\eta| < 2.5$
- $E_T(\Delta R = 0.30) < 4.1 \ GeV$

Combined muons

- $p_T > 15 \ GeV$
- $|\eta| < 2.5$
- $E_T(\Delta R = 0.30) < 3.2 \ GeV$
- nb tracks($\Delta R = 0.40$) < 2

TauJets

- $p_T > 20 \ GeV$
- $|\eta| < 2.5, |Q| = 1$
- (Calo+Track) seed and "Safe cut"-Tight
- remove overlap(taujet, e-medium/μcombined, 0.30)
- $E_{T,had}/p_T > 0.1$

• rejection against jet in J1+J2 sample, after τ -jet selection on the left

• rejection against electrons in $Z \to ee$, after τ -jet selection on the left

The lepton- τ_{jet} Visible Invariant Mass

- The Collinear Approximation is a good approximation when the parent particle is heavily boosted.
- Assume that the $\tau\text{-decay}$ products are collinear to the τ direction
- The approximation breaks down when the decay daughters are back-to-back (as most of the signal events)
- ⇒ The presence of the $Z \rightarrow \tau \tau$ signal can be estimated through the visible invariant mass, *i.e.* the invariant mass of the electron (muon) and the taujet.

EVENT SELECTION

QCD FACTORIZATION

CONCLUSION

Reconstruction of the $\tau\tau$ invariant mass

QCD background for the $e - \tau_{jet}$ Selection

• Number of QCD events after all analysis cuts, scaled to 100 pb^{-1}

	no ID cut	$\epsilon_{fact}^{(a)}$ loose	predicted	obtained from MC
J1F OS (a)	11825 ± 2365	0.66 ± 0.07	7804 ± 1767	
J2F OS (a)	11934 ± 1351	0.66 ± 0.07	7876 ±1222	
J1F+J2F OS (a)			15681 ± 2148	15399 ± 2253
J1F SS (a)	10879 ± 2268	0.66 ± 0.07	7180 ± 1679	
J2F SS (a)	10557 ± 1271	0.66 ± 0.07	6968 ± 1118	
J1F+J2F SS (a)			14148 ± 2017	14453 ± 2152
		$\epsilon_{fact}^{(b)}$ loose		
J1F OS (b)	64328 ± 5516	0.082 ± 0.011	5275 ± 840	
J2F OS (b)	128061 ± 4426	0.082 ± 0.011	10501 ± 1455	
J1F+J2F OS (b)			15776 ± 1680	15399 ± 2253
J1F SS (b)	51557 ± 4938	0.082 ± 0.11	4228 ± 697	
J2F SS (b)	125154 ± 4376	0.082 ± 0.11	10263 ± 1423	
J1F+J2F SS (b)			14490 ± 1584	14453 ± 2152

• "no ID cuts" \rightarrow "loose"

(a) = selection of the complete analysis except tau ID

(b) = selection of the complete analysis except tau ID and lepton isolation

*J1F = J1 dijet sample with 1 electron filter

*J2F = J2 dijet sample with 1 electron filter

 \Rightarrow good agreement between prediction from factorization and MC observation

 \Rightarrow good agreement between OS and SS

QCD background for the $e - \tau_{jet}$ Selection

• Number of QCD events after all analysis cuts, scaled to $100 \ pb^{-1}$

	no ID cut	$\epsilon_{fact}^{(a)}$ medium	predicted	obtained from MC
J1F OS (a)	11825 ± 2365	0.24 ± 0.02	2838 ± 615	
J2F OS (a)	11934 ± 1351	0.24 ± 0.02	2864 ± 403	
J1F+J2F OS (a)			5702 ± 735	4994 ± 1350
J1F SS (a)	10879 ± 2268	0.24 ± 0.02	2611 ± 586	
J2F SS (a)	10557 ± 1271	0.24 ± 0.02	2534 ± 371	
J1F+J2F SS (a)			5145 ± 694	3561 ± 999
		$\epsilon_{fact}^{(b)}$ medium		
J1F OS (b)	64328 ± 5516	0.029 ± 0.004	1865 ± 303	
J2F OS (b)	128061 ± 4426	0.029 ± 0.004	3714 ± 528	
J1F+J2F OS (b)			5579 ± 609	4994 ± 1350
J1F SS (b)	51557 ± 4938	0.029 ± 0.004	1495 ± 251	
J2F SS (b)	125154 ± 4376	0.029 ± 0.004	3629 ± 516	
J1F+J2F SS (b)			5125 ± 574	3561 ± 999

• "no ID cut" \rightarrow "medium"

(a) = selection of the complete analysis except tau ID $\,$

(b) = selection of the complete analysis except tau ID and lepton isolation

*J1F = J1 dijet sample with 1 electron filter

*J2F = J2 dijet sample with 1 electron filter

- \Rightarrow reasonable agreement (within the statistical error) between prediction from factorization and MC observation
- \Rightarrow good agreement between OS and SS

QCD background for the $e - \tau_{jet}$ Selection

• Number of QCD events after all analysis cuts, scaled to $100 \ pb^{-1}$

• "no ID cut" \rightarrow "tight"

	no cut	$\epsilon_{fact}^{(a)}$ tight	predicted	obtained from MC
J1F OS (a)	11825 ± 2365	0.030 ± 0.005	355 ± 92	
J2F OS (a)	11934 ± 1351	0.030 ± 0.005	358 ± 72	
J1F+J2F OS (a)			713 ± 117	626 ± 497
J1F SS (a)	10879 ± 2268	0.030 ± 0.005	326 ± 87	
J2F SS (a)	10557 ± 1271	0.030 ± 0.005	317 ± 65	
J1F+J2F SS (a)			643 ± 109	153 ± 153
		$\epsilon_{fact}^{(b)}$ tight		
J1F OS (b)	64328 ± 5516	0.0037 ± 0.005	238.014 ± 38	
J2F OS (b)	128061 ± 4426	0.0037 ± 0.005	474 ± 66	
J1F+J2F OS (b)			712 ± 76	626 ± 497
J1F SS (b)	51557 ± 4938	0.0037 ± 0.0007	191 ± 32	
J2F SS (b)	125154 ± 4376	0.0037 ± 0.0007	63 ± 65	
J1F+J2F SS (b)			654 ± 72	153 ± 153

(a) = selection of the complete analysis except tau ID

(b) = selection of the complete analysis except tau ID and lepton isolation

*J1F = J1 dijet sample with 1 electron filter

*J2F = J2 dijet sample with 1 electron filter

 \Rightarrow difficult comparison due to low statistics, but one can assume a good agreement according to the factorization results for "loose" or "medium" on two previous pages

QCD background for the $\mu - \tau_{jet}$ Selection

• Number of QCD events after all analysis cuts, scaled to $100 \ pb^{-1}$

	no ID cut	$\epsilon_{fact}^{(a)}$ loose	predicted	obtained from MC
J1F OS (a)	25694 ± 3374	0.66 ± 0.07	16958 ± 2862	
J2F OS (a)	17228 ± 1586	0.66 ± 0.07	11370 ± 1597	
J1F+J2F OS (a)			28328 ± 3278	31464 ± 3222
J1F SS (a)	20821 ± 3037	0.66 ± 0.07	13742 ± 2478	
J2F SS (a)	16644 ± 1559	0.66 ± 0.07	10985 ± 1554	
J1F+J2F SS (a)			24727 ± 2925	26762 ± 2985
		$\epsilon_{fact}^{(b)}$ loose		
J1F OS (b)	123154 ± 7386	0.042 ± 0.006	5172 ± 801	
J2F OS (b)	516548 ± 8684	0.042 ± 0.006	21695 ± 3121	
J1F+J2F OS (b)			26867 ± 3222	31464 ± 3222
J1F SS (b)	116952 ± 7198	0.042 ± 0.006	4912 ± 764	
J2F SS (b)	493626 ± 8489	0.042 ± 0.006	20732 ± 2983	
J1F+J2F SS (b)			25644 ± 3079	26762 ± 2985

• "no ID cut" \rightarrow "loose"

(a) = selection of the complete analysis except tau ID $\,$

(b) = selection of the complete analysis except tau ID and lepton isolation

*J1F = J1 dijet sample with 1 muon filter

*J2F = J2 dijet sample with 1 muon filter

- \Rightarrow reasonable agreement (within the statistical error) between prediction from factorization and MC observation
- \Rightarrow good agreement between OS and SS

QCD background for the $\mu - \tau_{jet}$ Selection

• Number of QCD events after all analysis cuts, scaled to 100 pb^{-1}

	no ID cut	$\epsilon_{fact}^{(a)}$ medium	predicted	obtained from MC
J1F OS (a)	25694 ± 3374	0.24 ± 0.02	6167 ± 959	
J2F OS (a)	17228 ± 1586	0.24 ± 0.02	4135 ± 513	
J1F+J2F OS (a)			10301 ± 1088	9273 ± 1824
J1F SS (a)	20821 ± 3037	0.24 ± 0.02	4997 ± 839	
J2F SS (a)	16644 ± 1559	0.24 ± 0.02	3995 ± 501	
J1F+J2F SS (a)			8992 ± 977	9575 ± 1906
		$\epsilon_{fact}^{(b)}$ medium		
J1F OS (b)	123154 ± 7386	0.015 ± 0.002	1847 ± 270	
J2F OS (b)	516548 ± 8684	0.015 ± 0.002	7748 ± 1041	
J1F+J2F OS (b)			9595 ± 1076	9273 ± 1824
J1F SS (b)	116952 ± 7198	0.015 ± 0.002	1754 ± 258	
J2F SS (b)	493626 ± 8489	0.015 ± 0.002	7404 ± 995	
J1F+J2F SS (b)			9159 ± 1028	9575 ± 1906

• "no ID cut" \rightarrow "medium"

(a) = selection of the complete analysis except tau ID

(b) = selection of the complete analysis except tau ID and lepton isolation

*J1F = J1 dijet sample with 1 muon filter

 $^*J2F = J2$ dijet sample with 1 muon filter

 \Rightarrow good agreement between prediction from factorization and MC observation

 \Rightarrow good agreement between OS and SS

QCD background for the $\mu - \tau_{jet}$ Selection

• Number of QCD events after all analysis cuts, scaled to $100 \ pb^{-1}$

• "no ID cut" \rightarrow "tight"

	no cut	$\epsilon_{fact}^{(a)}$ tight	predicted	obtained from MC
J1F OS (a)	25694 ± 3374	0.030 ± 0.005	771 ± 163	
J2F OS (a)	17228 ± 1586	0.030 ± 0.005	517 ± 98	
J1F+J2F OS (a)			1288 ± 191	886 ± 626
J1F SS (a)	20821 ± 3037	0.030 ± 0.005	625 ± 138	
J2F SS (a)	16644 ± 1559	0.030 ± 0.005	499 ± 95	
J1F+J2F SS (a)			1124 ± 168	1178 ± 659
		$\epsilon_{fact}^{(b)}$ tight		
J1F OS (b)	123154 ± 7386	0.0019 ± 0.0006	234 ± 44	
J2F OS (b)	516548 ± 8684	0.0019 ± 0.0006	981 ± 176	
J1F+J2F OS (b)			1215 ± 182	886 ± 626
J1F SS (b)	116952 ± 7198	0.0019 ± 0.0006	222 ± 42	
J2F SS (b)	493626 ± 8489	0.0019 ± 0.0006	938 ± 169	
J1F+J2F SS (b)			1160 ± 174	1178 ± 659

(a) = selection of the complete analysis except tau ID

(b) = selection of the complete analysis except tau ID and lepton isolation

*J1F = J1 dijet sample with 1 electron filter

*J2F = J2 dijet sample with 1 electron filter

 \Rightarrow difficult comparison due to low statistics, but one can assume a good agreement according to the factorization results for "loose" or "medium" on two previous pages