
StoRM metrics and logs
parsing and retrieval

CNAF Summer School
2018

Simone Rossi Tisbeni

Customary
workflow for

StoRM debugging

A ticket is opened, signaling that an experiment has
trouble accessing data. Example files are provided;

The operator search for the example file in
Frontend;

Follows it through backend and gridftp to find where
it ‘got stuck’;

Establish the error timestamp;

Looks to monitoring logs and metrics to determine if
StoRM was behaving errouneously.

StoRM
STOrage Resource

Management

Disk based storage
management service
Built for cluster file system
Direct access (I/O) to shared
files and folders

• Frontend – Manages user
authentication and stores
requests data

• Backend – Executes SRM
functionalities, takes care of
space and authorization

StoRM Frontend

StoRM Backend

Request
Database

Inserts SRM requests in database
- Logs with requests
- Logs with operation metrics

Manages SRM requests
- Logs with success report
- Logs with operation metrics

Identification of
key components

in log file

• Timestamps

• Metrics

• Messages

• Descriptive keys and
separators

Extract information by isolating descriptors

[2018-09-07 17:10:36,952]: [#.....1
lifetime=0:00.01] Heap Free:1778895480 SYNCH [0]

[■]: [#.....■ lifetime=■] Heap Free:■ SYNCH [■]

Timestamp Index Lifetime Heap Free Synch

2018-09-07 17:10,36 1 0:00.01 1778895480 0

Step by step
procedure

• Establish working directory
and input files

• Determine format and keys

• Extract the values

• Convert date time in UNIX
Epoch Time

• Export the .csv file

Step by step
procedure

• Establish working directory
and input files

• Determine format and keys

• Extract the values

• Convert date time in UNIX
Epoch Time

• Export the .csv file

Step by step
procedure

• Establish working directory
and input files

• Determine format and keys

• Extract the values

• Convert date time in UNIX
Epoch Time

• Export the .csv file

Step by step
procedure

• Establish working directory
and input files

• Determine format and keys

• Extract the values

• Convert date time in UNIX
Epoch Time

• Export the .csv file

Step by step
procedure

• Establish working directory
and input files

• Determine format and keys

• Extract the values

• Convert date time in UNIX
Epoch Time

• Export the .csv file

InfluxDB structure

• Non-relational database

• Optimized for metrics
storage

• Different time policies
• Data is written into 1 week

retention policy by default.

• Every 15 minutes/30
minutes/1 hour the data is
down sampled into 1
month/6 month/1 year
retention policy.

Metrics storage

• Multiple metrics stored for
every host

• Measure performance and
load of various server
depending on the
experiment

i.e. ATLAS experiment

• storm-atlas.cr.cnaf.infn.it
frontend and backend

• storm-fe-atlas-07.cr.cnaf.infn.it
second frontend

• ds-808.cr.cnaf.infn.it

• ds-908.cr.cnaf.infn.it
gridftp

Querying the database

• Establish a connection to the client

• Determine the measurement types

• Query for a specific host

influx -host=HOST -port=PORT -username=“NAME" -
password=“PASSWORD" -database=“DATABASE”

SHOW MEASUREMENTS

SELECT * FROM ‘MEASUREMENT’ WHERE "host" =
‘HOSTNAME’

Every query is done through the
Python client:
InfluxDB-Python

Extract csv
tables

• Should follow a host-first structure

• Should merge different measurements by category

• Should maintain the UNIX timestamp format

Lo
g

fr
eq

u
en

cy

• Heartbeat log

• Monitorging log

One line every minute

• Backend metrics logs
(one for each command)

Multiple lines every minute

• InfluxDB metrics

One line every five minutes:

Concatenation
rules

• Backend metrics are split by type

• Timestamp is rounded off to
one‐minute precision

• In case of overlap the more recent
is kept

• Every .csv is concatenated and
ordered by timestamp

Query for specific
timestamp

• Queries InfluxDB using the
most accurate retention
policy

• Creates a merged logs
database with values
included between two
timestamp

C
o

n
cl

u
si

o
n

s
Increased the readability of logs

Introduced toolkit to access specific logs and metrics

Prepared the foundation for machine learning algorithms

The code produced is well documented to allow for easier pick-
up by different people

For more information on InfluxDB

Documentation: https://docs.influxdata.com/influxdb/v1.7/

Python library: https://influxdb-python.readthedocs.io/en/latest/

The repository for the code presented is available through the following git:
https://baltig.infn.it/summerstudentscnaf/log-parsing

https://docs.influxdata.com/influxdb/v1.7/
https://influxdb-python.readthedocs.io/en/latest/
https://baltig.infn.it/summerstudentscnaf/log-parsing

Simone Rossi Tisbeni

Grad student in Applied Physics

A.A 2018/19

Will continue working on predictive maintenance at CNAF for his graduate thesis
with Prof. Bonacorsi Daniele and Martelli Barbara

