

The Higgsploding Universe

Michael Spannowsky

IPPP, Durham University

In collaboration with Valya Khoze

Due to absence of signs of new physics

HEP has 'Big Mac' blues,

i.e. why nature not like (as natural as) advertised?

Commercial

Reality

Sure, Higgs boson does the job, but...

The Higgs boson, a window to new physics

A Standard Model Tale

Before the discovery of the Higgs boson - (Yang-Mills theories)

4

Genova

Seminar

Michael Spannowsky

A Standard Model Tale

Before the discovery of the Higgs boson - (Yang-Mills theories)

Multiplicity 000000 Gluon amplitudes for W_{-} n x gluon -> m x gluon D_{n-1} D_n for given helicity and color structure strong cancellations between Feynman diagrams [Parke, Taylor '86] **Kinetic Energy** [Berends, Giele '87] m gluon -> m! Feyn. diags model inconsistent Perturbative unitarity but not m! growth for violated at high energies (at high energies) Amplitude value

5

Michael Spannowsky

28.11.2018

Seminar

Genova

Situation at tree-level

After the discovery of the Higgs boson - complete Standard Model

Situation at tree-level

Calculation of $1^* \rightarrow n$ amplitudes

Assume Lagrangian

$$\mathcal{L}_{\rho}(\phi) = \frac{1}{2} \left(\partial\phi\right)^2 - \frac{1}{2}M^2\phi^2 - \frac{1}{4}\lambda\phi^4 + \rho\phi$$

The amplitude is calculated using the LSZ reduction technique [Brown '92]

$$\langle n|\phi(x)|0\rangle = \lim_{\rho \to 0} \left[\prod_{j=1}^{n} \lim_{p_j^2 \to M^2} \int d^4 x_j e^{ip_j \cdot x_j} (M^2 - p_j^2) \frac{\delta}{\delta\rho(x_j)} \right] \langle 0_{\text{out}}|\phi(x)|0_{\text{in}}\rangle_{\rho}$$

where the tree-level approximation is obtained via $\langle 0_{out} | \phi(x) | 0_{in} \rangle_{\rho} \longrightarrow \phi_{cl}(x)$ and $\phi_{cl}(x)$ is a solution to the classical field equation

IDEA: Fill whole phase-space with particles, i.e. produce all particles at mass threshold

with
$$\vec{p}_j = 0$$
 $p_j^{\mu} = (\omega, \vec{0})$ and $\rho(x) = \rho(t) = \rho_0(\omega) e^{i\omega t}$
Here QFT -> time-dep QM:
 $z(t) := \frac{\rho_0(\omega) e^{i\omega t}}{M^2 - \omega^2 - i\epsilon} := z_0 e^{i\omega t}, \quad z_0 = \text{finite const}$

7

Genova

Hence, the generating function of tree amplitudes on multi-particle thresholds is a classical solution to the Euler-Lagrange equation. It solves an ordinary differential equation with no source term

$$\begin{split} & d_t^2\phi + M^2\phi + \lambda\phi^3 = 0 & \text{thus, only positive freq. modes present} \\ & \swarrow & (\text{initial condition}) \\ \text{with} & \phi_{\mathrm{cl}}(t) = z(t) + \sum_{n=2}^{\infty} d_n \, z(t)^n \,, \qquad z := z_0 \, e^{iMt} \end{split}$$

The coefficients d_n determine the actual amplitudes by differentiation w.r.t. z

$$\mathcal{A}_{h^* \to n \times h} = \left. \left(\frac{\partial}{\partial z} \right)^n \phi_{cl} \right|_{z=0} = n! d_n = n! (2v)^{1-n} \quad \text{Factorial growth}$$

$$\phi_{\rm cl}(t) = \frac{z(t)}{1 - \frac{\lambda}{8M^2} z(t)^2} \qquad \mathcal{A}_{1 \to n} = n! \left(\frac{\lambda}{8M^2}\right)^{\frac{n-1}{2}}$$

Same findings by [Voloshin '92] [Argyes, Kleiss, Papadopoulos '92] [Libanov, Rubakov, Son, Troitski '94]

Genova

Seminar

8

Michael Spannowsky

h*->nh relies on outgoing particles

Several generalisations of this approach:

- Higgs like, ie. phi⁴ with vev: [Brown '92] $\mathcal{L}(h) = \frac{1}{2} \left(\partial h\right)^2 - \frac{\lambda}{4} \left(h^2 - v^2\right)^2 \quad \longrightarrow \quad \mathcal{A}_{1 \to n} = \left(\frac{\partial}{\partial z}\right)^n h_{\rm cl} \Big|_{z=0} = n! \, (2v)^{1-n}$ [Khoze '14] • Gauge-Higgs theory: $\mathcal{A}(h \to n \times h + m \times Z_L) = (2v)^{1-n-m} n! m! d(n,m)$ Higgs process Z process $\mathcal{A}(Z_L \to n \times h + (m+1) \times Z_L) = \frac{1}{(2v)^{n+m}} n! (m+1)! a(n,m)$ Go beyond mass threshold (needs space-dep sol.):

[Argyres, Kleiss, Papadopoulos '92] [Libanov, Rubakov, Son, Troitski '94]

GenovaSeminar9Michael Spannowsky28.11.2018

How about loops?

<u>Usual criticism</u>: need to include loops to render cross section finite. Keep in mind, we calculate exclusive rate of massive internal and outgoing particles -> **no mass-divergencies and observable IR-safe**

Loop corrections calculated by expanding around classical field $\phi(x) = \phi_0(x) + \phi_q(x)$ Euclidean Lagrangian becomes $\mathcal{L} = \frac{1}{2}(\partial_\mu\phi_q)^2 + \frac{1}{2}(m^2 + 3\lambda\phi_0^2)\phi_q^2 + \lambda\phi_0\phi_q^3 + \frac{\lambda}{4}\phi_q^4$. After promoting classical solution ϕ_0 to quantum expectation value $\langle \phi \rangle = \phi_0 + \langle \phi_q \rangle$ Individual amplitudes calculated via gen. functional $\langle n|\phi|0 \rangle = \left(\frac{\partial}{\partial z_0}\right)^n (\phi_0 + \langle \phi_q \rangle)|_{z_0=0}$

Use Feynman rules of Eucl. Lagrangian and calculate

$$\langle \phi_q(y) \rangle_{1-\text{loop}} = (-3\lambda) \int d^4x \, G(y,x) \, \phi_0(x) \, G(x,x)$$

You will find for the combined tree + 1-loop [Smith `92] generating functional [Voloshin `92]

$$\phi_{0+1}(t) = \frac{z(t)}{1 - (\bar{\lambda}/8\bar{m}^2)z(t)^2} \left(1 - \frac{3\lambda}{4}F\frac{(\lambda/8m^2)^2 z(t)^4}{(1 - (\lambda/8m^2)z(t)^2)^2}\right)$$

Now follow Brown's program to build

One obtains for scalar loops

$$A_n = n! \, (2v)^{1-n} \left[1 + n(n-1) \, \frac{\sqrt{3} \, \lambda}{8\pi} + O(\lambda^2) \right] \quad \text{for} \quad \lambda n \ll 1$$

and including fermion loops it is argued cancellations can occur [Voloshin '17] $A_n \to A_n \times \left[1 + (-1)^{2r} C(r) n^{4r-4} \lambda\right] \quad \text{with} \quad r = m_t / \sqrt{2\lambda v^2}$

(exponentiate for $n\lambda > 1$)? in SM subleading to scalar loops

In non-rel. limit the LO cross section for n-Higgs production scales like:

$$\sigma_n \propto \exp\left[\frac{1}{\lambda} F_{\text{h.g.}}(\lambda n, \varepsilon)\right] \quad \text{with} \quad \frac{1}{\lambda} F_{\text{h.g.}}(\lambda n, \varepsilon) = \frac{\lambda n}{\lambda} \left(f_0(\lambda n) + f(\varepsilon)\right)$$

for a scalar theory with SSB: $f_0(\lambda n) = \log \frac{\lambda n}{4} - 1$ at tree level
[Libanov, Rubakov, Son, Troitsky '94] $f(\varepsilon) \rightarrow \frac{3}{2} \left(\log \frac{\varepsilon}{3\pi} + 1\right) - \frac{25}{12}\varepsilon \quad \text{for } \varepsilon \ll 1$

However, leading loop contributions can be resummed (only valid when $n\lambda < 1$): <u>Resummed 1-loop contribution</u>:

$$\begin{aligned} \mathcal{A}_{1 \rightarrow n} &= \mathcal{A}_{1 \rightarrow n}^{\text{tree}} \times \exp\left[B\,\lambda n^{2} + \mathcal{O}(\lambda n)\right] & \text{with} \quad B = \frac{\sqrt{3}}{4\pi} \\ f_{0}(\lambda n) &= \underbrace{\log \frac{\lambda n}{4} - 1 + \lambda n \frac{\sqrt{3}}{4\pi}}_{\text{tree}} & \text{significant loop enhancement} \\ & \text{tree} & \text{loop} & \text{Higher loops expected to scale } \left(\frac{n\lambda}{4\pi}\right)^{\#\text{Loop}} \\ f(\varepsilon) &\to \frac{3}{2} \left(\log \frac{\varepsilon}{3\pi} + 1\right) - \frac{23}{12}\varepsilon & \text{for} \quad \varepsilon \ll 1 \\ & \text{[Smith '92, Voloshin '92]} \\ & \text{kinematics} & & \text{[Voloshin '17]} \\ \end{array} \end{aligned}$$

From amplitudes to cross sections

$$\sigma_{n,m} = \int d\Phi_{n,m} \frac{1}{n! \, m!} |\mathcal{A}_{h^* \to n \times h + m \times Z_L}|^2 \quad \mathbf{x} \quad \text{flux factor}$$

$$\int d\Phi_n = (2\pi)^4 \delta^{(4)}(P_{\text{in}} - \sum_{j=1}^n p_j) \prod_{j=1}^n \int \frac{d^3 p_j}{(2\pi)^3 \, 2p_j^0} \qquad \text{Bose statistics factors for n identical}$$

$$\text{Higgs and m identical long. Vec.}$$

Integration with $n\varepsilon_h$ fixed $\Phi_n \simeq \frac{1}{\sqrt{n}} \left(\frac{M_h^2}{2}\right)^n \exp\left[\frac{3n}{2} \left(\log\frac{\varepsilon_h}{3\pi} + 1\right) + \frac{n\varepsilon_h}{4} + \mathcal{O}(n\varepsilon_h^2)\right]$

$$\sigma_{n,m} \sim \exp\left[2\log(\kappa^m d(n,m)) + n\log\frac{\lambda n}{4} + m\log\frac{\lambda m}{4}\right]$$

$$+\frac{n}{2}\left(3\log\frac{\varepsilon_{h}}{3\pi}+1\right)+\frac{m}{2}\left(3\log\frac{\varepsilon_{V}}{3\pi}+1\right)-\frac{25}{12}n\varepsilon_{h}-3.15m\varepsilon_{V}+\mathcal{O}(n\varepsilon_{h}^{2}+m\varepsilon_{V}^{2})\right]$$

$$\bigwedge$$
kinematic (phase space)
suppression

13

Genova

28.11.2018

For $n\lambda > 1$ loops overpower tree result, how about semi-classical approach? [Son '95]

ullet Multiparticle decay rates Γ_n can be calculated using semi-classical method

intrinsically non-perturbative method

no reference to perturbation theory

• Path-integral calculated in deepest descend method, where

 $\lambda \to 0$, $n \to \infty$, with $\lambda n = \text{fixed}$, $\varepsilon = \text{fixed}$.

• Semi-classical calculation in regime where $\lambda n = \text{fixed} \ll 1$, $\varepsilon = \text{fixed} \ll 1$, reproduces tree-level perturbative result for non-relativistic final states Remarkably this semi-classical calculation also reproduces the 1-loop resummed calculation in this limit

14

Genova

Just like in the case of Brown's solution for diagrams in perturbation theory, is the self-energy $\hat{\Sigma}(p^2)$ calculated semi-classically

 $\Gamma_n(s) \propto \mathcal{R}_n^{\text{semicl}}(\sqrt{s}) = \int d\Phi_n(s) \langle 0|\mathcal{O}^{\dagger}(0)\mathcal{S}^{\dagger}|n\rangle_{1\text{PI}} \langle n|\mathcal{SO}(0)|0\rangle_{1\text{PI}}$

Saddle-point solutions considered in semi-classical approach approximate the matrix element

$$\mathcal{M}_{1^* \to n}^{\dagger} = {}^{\mathrm{in}} \langle X | n \rangle_{1\mathrm{PI}}^{\mathrm{out}} = \langle 0 | \mathcal{O}^{\dagger}(0) \, \mathcal{S}^{\dagger} | n \rangle_{1\mathrm{PI}}$$

Semi-classical calculation for rate R(1->nh, E)

[Son '95] [Khoze '17]

• Semi-classical calculation is applicable and more relevant for nonperturbative regime of Higgsplosion, where

$$\lambda n = \text{fixed} \gg 1$$
, $\varepsilon = \text{fixed} \ll 1$.

• This calculation was carried out with result given by [Khoze '17]

$$\mathcal{R}_{1\text{-loop}}^{\text{semiclassical}} = \exp\left[n\left(\log\frac{\lambda n}{4} - 1\right) + 3.02n\sqrt{\frac{\lambda n}{4\pi}} + \frac{3n}{2}\left(1 + \log\frac{\varepsilon}{3\pi}\right) - \frac{25}{12}n\varepsilon\right]$$

higher orders are suppressed by powers of $\mathcal{O}(1/\sqrt{\lambda n})$ and powers of ε
Recovers structure of 1-loop resummed result:
 $\mathcal{R}_{1\text{-loop}}^{\text{resummed}} = \exp\left[n\left(\log\frac{\lambda n}{4} - 1\right) + \sqrt{3}\frac{\lambda n^2}{4\pi} + \frac{3n}{2}\left(1 + \log\frac{\varepsilon}{3\pi}\right) - \frac{25}{12}n\varepsilon\right]$

Thus we have computed the rate R in the large lambda n limit:

using the semi-classical approach and the thin-wall approximation

Explosive growth of 1->n process
$$\mathcal{R}_n(s) := \frac{1}{2M_h^2} \int d\Pi_n |\mathcal{M}(1 \to n)|^2$$

where $\mathcal{R} = \exp\left[\frac{\lambda n}{\lambda} \left(\log\frac{\lambda n}{4} + 3.02\sqrt{\frac{\lambda n}{4\pi}} - 1 + \frac{3}{2} \left(\log\frac{\varepsilon}{3\pi} + 1\right) - \frac{25}{12}\varepsilon\right)\right]$

energy beyond threshold

energy low

Schwinger-Dyson-propagator and optical theorem

SD propagator, valid in perturbative and non-perturbative QFT

$$\Delta(p) = \int d^4x \, e^{ip \cdot x} \langle 0 | T\left(\phi(x) \, \phi(0)\right) | 0 \rangle = \frac{i}{p^2 - m_0^2 - \Sigma(p^2) + i\epsilon}$$

where $-i\Sigma(p^2)=\sum -(1{
m PI})-$ and the physical (pole) mass is $m^2=m_0^2+\Sigma(m^2)$

with the renormalisation constant $Z_{\phi} = \left(1 - \frac{d\Sigma}{dp^2}\Big|_{p^2 = m^2}\right)^{-1}$ we define the renorm. quantities

$$\Delta_R(p) = Z_{\phi}^{(-1)} \Delta(p),$$

$$\Sigma_R(p) = Z_{\phi} \left(\Sigma(p^2) - \Sigma(m^2) - \Sigma'(m^2)(p^2 - m^2) \right)$$

renormalised propagator $\Delta_R(p) = rac{i}{p^2 - m^2 - \Sigma_R(p^2) + i\epsilon}$

19

Genova

Schwinger-Dyson-propagator and optical theorem

The optical theorem now relates the $1^* \rightarrow nh$ amplitudes with the imaginary part of the self-energy (valid to all orders)

$$-\operatorname{Im} \Sigma_{R}(p^{2}) = m \Gamma(p^{2}) \quad \quad -\operatorname{Im} \left(\stackrel{p^{2}}{-} \stackrel{p^{2}}{-} \right) = m^{\frac{p^{2}}{-}} \right)$$
where $\Gamma(s) = \sum_{n=2}^{\infty} \Gamma_{n}(s)$ and $\Gamma_{n}(s) = \frac{1}{2m} \int \frac{d\Phi_{n}}{n!} |\mathcal{M}(1 \to n)|^{2}$
and thus $\Delta_{R}(p) = \frac{i}{p^{2} - m^{2} - \operatorname{Re} \Sigma_{R}(p^{2}) + im\Gamma(p^{2}) + i\epsilon}$
No information as
perturbation theory breaks
down for many loops, but no
physical reason to explode
or cancel imaginary part
$$Higgsplodes \quad h_{h} \stackrel{h}{h}_{h} \stackrel{h}{h} \stackrel{h}{h}_{h} \stackrel{h}{h}_{h} \stackrel{h}{h}_{h} \stackrel{h}{h} \stackrel$$

20

[[]Khoze, MS '17]

Higgspersion in loops

Continuous resummation of the SD propagator does not shut down imaginary part. You need to consider the .

Due to Higgsplosion the multi-particle contribution to the width of X explode at $p^2 = s_{\star}$ where $\sqrt{s_{\star}} \simeq \mathcal{O}(25) \text{TeV}$

) It provides a sharp UV cut-off in the integral, possibly at $\,s_\star \ll M_X^2$

Hence, the contribution to the Higgs mass amounts to

$$\Delta M_h^2 \propto \lambda_P \; \frac{s_\star}{M_X^2} \; s_\star \ll \lambda_P \, M_X^2$$

24

and thus mends the Hierarchy problem by $\left(\frac{\sqrt{s_\star}}{M_X}\right)^4 \simeq \left(\frac{25\,{
m TeV}}{M_X}\right)^4$

Genova

If Higgsplosion is not a mathematical artefact but realised in nature:

+ Hierarchy problem (Loop level)

Higgsplosion

SM heals itself, retains self-consistency to very high energies and multiplicities

constructive interference between amplitudes for h*-> nh elementary scalars in a spontaneously broken QFT

[Khoze, MS '17]

Why not observed somewhere else before?

Higgs lacks symmetry to prevent Higgsplosion:

- Gauge fields (gauge symmetry) see [Parke, Taylor '86]
- Fermions (Pauli principle) zero at threshold

<u>Quantum Mechanics:</u>

• Energy levels not equidistantly spaced

Integrable systems in 1+1 and 2+1 dim:

 Scalar loop integrals near mass threshold IR divergent [Libanov, Rubakov, Son, Troitski '94]

Might need spontaneously broken scalar QFT in at least 3+1 dim

Genova

26

Michael Spannowsky

• SM has new physical scale

$$E_* = C \frac{m_h}{\lambda}$$
 with $C = \text{const.}$

(close analogy to Sphaleron)

$$M_{\rm sph} = {\rm const} \frac{m_W}{\alpha_w}$$

Scaling behaviour of propagator:

$$\Delta(x) := \langle 0|T(\phi(x)\phi(0))|0\rangle \sim \begin{cases} m^2 e^{-m|x|} & : \text{ for } |x| \gg 1/m \\ 1/|x|^2 & : \text{ for } 1/E_* \ll |x| \ll 1/m \\ E_*^2 & : \text{ for } |x| \lesssim 1/E_* \end{cases}$$

for $|x| \lesssim 1/E_*$ one enters the Higgsplosion regime

Effect calculable on the lattice?

[Khoze, MS '17]

• As all virtual particles Higgsplode, all virtual corrections are regulated

• As all loop-diagrams are regulated, i.e. quantum fluctuations are exponentially suppressed, the Standard Model develops an asymptotic fix point.

Classical/Deterministic theory

From high scale, quantum fluctuations are emergent phenomenon

• SM is embedded into asymptotically safe theory

Graviton Higgsplodes as well, as do all quantum corrections

Allows to combine QFT and Gravity

Running of couplings in presence of Higgsplosion

Higgs self-coupling doesnt turn negative

Electroweak potential remains stable

No Landau poles for U(1) and Yukawas

• High-energy scatterings are significantly modified, i.e. virtual s-channel particles are Higgspersed

Questions on implications:

[Khoze, MS '17]

Is Inflation excluded/affected by Higgsplosion?

Not necessarily... for example singlet field S non-minimally coupled to gravity

Take Lagrangian in Jordan frame

$$\mathcal{L} = \sqrt{-g} \left[-\frac{M_{Pl} + \xi_s S^2}{2} R + \partial_\mu H^\dagger \partial^\mu H + (\partial_\mu S)^2 - V(H, S) \right]$$

the scalar potential is $V(H,S) = -\mu_h H^{\dagger} H + \lambda_h (H^{\dagger} H)^2 - \frac{1}{2} \mu_S^2 S^2 + \frac{1}{4} \lambda_S S^4 + \frac{1}{2} \lambda_{Sh} H^{\dagger} H S^2$

During Inflation Higgs mass in Inflaton background large $M_h \simeq \sqrt{\frac{\lambda_{Sh}}{2}} S(x) \simeq \frac{M_{Pl}}{\sqrt{\xi_s}}$

No phase space for S to Higgsplode

Picture changes fundamentally during reheating

32

Questions on implications:

Is the existence of Axions (light scalars) irreconcilable with Higgsplosion?

QCD-Axion provides predictive framework to address this question

$$m_a \simeq \frac{5.7 \cdot 10^{15} \text{eV}}{f_a}$$
 and $\lambda_a \equiv \left. \frac{\partial^4 V(a)}{\partial a^4} \right|_{a=0} \simeq -0.346 \frac{m_a^2}{f_a^2}$

Axionplosion scale $E_*^{\text{Axion}} \simeq 60 \frac{f_a^2}{m_a} \longrightarrow \text{ limit } f_a \gtrsim 2.1 \text{ GeV}$

current experimental limit $f_a \gtrsim 10^8 - 10^{17} \text{ GeV}$

If scalars are very weakly coupled they will not trigger X-plosion

33

Can we discover Higgsplosion?

Can we discover Higgsplosion?

Can we discover Higgsplosion?

Anomalous magnetic moment of the muon and electron

Problem: all corrections scale like \hat{s}/E_*^2

Prospects of direct observation of Higgslposion

Collider observables for Higgsplosion production

Prospects of direct observation of Higgsplosion

$$\begin{array}{l} \text{Partonic gluon-fusion cross} \\ \text{section:} \\ & \sigma_{gg \rightarrow n \times h}^{\Delta} \sim y_t^2 m_t^2 \log^4 \left(\frac{m_t}{\sqrt{s}}\right) \times \frac{\mathcal{R}_n(s)}{\left(1 - \frac{m_h^2}{s}\right)^2 + \mathcal{R}^2(s)} \\ \\ & \sigma_{gg \rightarrow n \times h} \sim \begin{cases} \mathcal{R} & : \text{ for } \sqrt{s} \leq E_* \text{ where } \mathcal{R} \lesssim 1 \\ 1/\mathcal{R} \rightarrow 0 & : \text{ for } \sqrt{s} \geq E_* \text{ where } \mathcal{R} \gg 1 \end{cases} \text{ asymptotic large energy behaviour} \\ \\ & \text{there is smooth-spot for energy into hard process, or subsequent emissions of jets} \\ & \sigma_{gg \rightarrow n \times h} \sim \begin{cases} \mathcal{R} & : \text{ for } \sqrt{s} \ll E_* \text{ where } \mathcal{R} \ll 1 \\ 1 & : \text{ for } \sqrt{s} \geq E_* \text{ where } \mathcal{R} \ll 1 \end{cases} \\ \end{array}$$

Partonic process want to stay `on resonance', where

$$\sum_{n} \mathcal{R}_n(s) = \mathcal{R}(s) \sim 1$$

adjust x in hadron collision or emit excessive energy via jets

Prospects of direct observation of Higgslposion Vector boson fusion at high-energy pp colliders (FCC)

Vector boson fusion at high-energy pp colliders (FCC)

Number of Higgses in the final state

Train of thought:

h* -> n h shows factorial growth in classical, 1-loop resummed and semi-classical calculations

If $\Gamma_n(p^2)$ for any n explodes $\Gamma_{
m tot}(p^2)$ explodes

optical theorem (all orders)

Imaginary part of self-energies explode

Real part can't cancel imaginary part of self-energy

All 2-point and n-point functions shut down beyond Higgsplosion scale

New physical scale in SM, no Unitarity violation, no Hierarchy problem, asymptotically safe theory, stable vacuum, minimal-length theory

Summary

If Higgsplosion realised it will have spectacular consequences, i.e. many pieces fall into place

The SM has a new energy scale one can test

No-loose theorem for future collider (either Higgsplosion or NP, e.g. composite Higgs)

Currently, idea relies on 20th century QFT

Experimental tests

-> build O(100) TeV collider

-> much improved low energy measurements, e.g. g-2

Theoretical tests

- -> Lattice calculation
- -> Improved semiclassical approach?