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Due to absence of signs of new physics
HEP has ‘Big Mac’ blues, 


i.e. why nature not like (as natural as) advertised?

Sure, Higgs boson does the job, but…

Commercial Reality
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Effective
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The Higgs boson, a window to new physics
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A Standard Model Tale
Before the discovery of the Higgs boson - (Yang-Mills theories)

Kinetic Energy

Multiplicity

W

W

W

W

W

W

W

Wγ
W

W

W

WZ

Situation at tree-level

Perturbative unitarity 
violated at high energies

model inconsistent 
(at high energies)

Gluon amplitudes for  

n x gluon -> m x gluon

for given helicity and 
color structure strong 
cancellations between 
Feynman diagrams
[Parke, Taylor ’86 ]

m gluon -> m! Feyn. diags
but not m! growth for 
Amplitude value

[Berends, Giele ’87 ]
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After the discovery of the Higgs boson - complete Standard Model

Multiplicity
Situation at tree-level
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+    Hierarchy problem (Loop level)

Kinetic Energy

Lack of symmetry 
for elementary 
scalar particle

h* -> n x h

[Brown ’92 ]

n Higgs -> n! Feyn. diags

and not n! growth for 
Amplitude value

[Voloshin ’92 ]

Perturbative unitarity 
restored at high energies

model consistent 

(at high energies)
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Calculation of 1* -> n amplitudes
Assume Lagrangian

         [More detail: Tree-level n-point Amplitudes on mass threshold]

6

The amplitude A1!n for the field � to create n particles in the �4 theory,

L⇢(�) =
1

2
(@�)2 � 1

2
M2�2 � 1

4
��4 + ⇢ � ,

is derived by applying the LSZ reduction technique:

hn|�(x)|0i = lim
⇢!0

2

4
nY

j=1

lim
p2
j!M2

Z
d4xje

ipj ·xj (M2 � p2j )
�

�⇢(xj)

3

5 h0out|�(x)|0ini⇢ .

Tree-level approximation is obtained via h0out|�(x)|0ini⇢ �! �cl(x) where �cl(x)
is a solution to the classical field equation.

On mass threshold limit all outgoing particles are produced at rest, ~pj = 0
and we set all pµj = (!,~0) and ⇢(x) = ⇢(t) = ⇢0(!) ei!t. Hence,

(M2 � p2j )
�

�⇢(xj)
�! (M2 � !2)

�

�⇢(tj)
=

�

�z(tj)
,

z(t) :=
⇢0(!) ei!t

M2 � !2 � i✏
:= z0 ei!t , z0 = finite const

The amplitude is calculated using the LSZ reduction technique
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where the tree-level approximation is obtained via 

and  is a solution to the classical field equation  
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IDEA: Fill whole phase-space with particles, i.e. produce all particles at mass threshold
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Here QFT -> time-dep QM:
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[Brown ’92]
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Hence, the generating function of tree amplitudes on multi-particle thresholds 

is a classical solution to the Euler-Lagrange equation. It solves an ordinary 
differential equation with no source term

         [More detail: Tree-level amplitudes in phi^4 on mass threshold]
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         Brown 9209203

The generating function of tree amplitudes on multiparticle thresholds is a clas-
sical solution. It solves an ordinary di↵erential equation with no source term,

d2t�+M2�+ ��3 = 0 .

The solution contains only positive frequency harmonics, i.e. the Taylor expan-
sion in z(t),

�cl(t) = z(t) +
1X

n=2

dn z(t)
n , z := z0 e

iMt

Coe�cients dn determine the actual amplitudes by di↵erentiation w.r.t. z,

A1!n =

✓
@

@z

◆n

�cl

����
z=0

= n! dn Factorial growth!!

�cl(t) =
z(t)

1� �
8M2 z(t)2

A1!n = n!

✓
�

8M2

◆n�1
2
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with

The coefficients 
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determine the actual amplitudes by differentiation w.r.t. z
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Same findings by [Voloshin ’92] [Argyes, Kleiss, Papadopoulos ’92]
[Libanov, Rubakov, Son, Troitski ’94]

h*->nh relies on outgoing particles
thus, only positive freq. modes present

(initial condition)

model description of the Higgs boson in terms of a single real scalar field h with the VEV

v and the self-coupling �,

L =
1

2
@
µ
h @µh � �

4

�
h
2 � v

2
�2

. (2.11)

According to [2], since the final state in (2.10) contains only the outgoing particles, the

solution hcl(x) relevant to the problem at hand should contain only the positive frequency

modes, e
+inMht where Mh =

p
2� v is the Higgs boson mass. This specifies the initial

conditions, or equivalently the analytic structure of the solution – its time-dependence is

described by the complex variable z,

z(t) = z0 e
iMht , Mh =

p
2�v (2.12)

on which the configuration hcl depends holomorphically, so that there is no dependence on

the complex-conjugate variable z
⇤,

hcl(~x, t) = v +
1X

n=1

dn(~x) z(t)
n
, (2.13)

and dn(~x) are the coe�cients of the Taylor expansion in powers of z. Next we consider the

simplest kinematical configuration, where all the final state particles are produced at their

mass threshold (i.e. with vanishing spacial momenta). In this case, the classical solution

in question, hcl, is uniform in space and the Euler-Lagrange equation becomes an ordinary

di↵erential equation,

d
2
th = ��h

3 + �v
2
h , (2.14)

with the initial conditions, hcl = v+ z+O(z2). The coe�cients dn of the Taylor expansion

of the classical solution now become space-independent with d1 = 1 and the solution is

uniquely specified. Its analytic form is remarkably simple [2],

hcl(t) = v
1 + z(t)

2v

1� z(t)
2v

, (2.15)

and its Taylor expansion reads,

hcl(t) = v + z +
1X

n=2

dn z
n
, with dn = (2v)1�n

, for n = 1, . . .1 . (2.16)

The presence of the singularity of (2.15) at z = 2v is the consequence of the finite radius of

convergence of the Taylor expansion (2.15). The classical solution hcl defines the generating

functional for the tree-level scattering amplitudes. All n-point tree-level amplitudes at

threshold are found by di↵erentiating hcl with respect to z, [2]

Ah⇤!n⇥h =

✓
@

@z

◆n

hcl

����
z=0

= n! dn = n! (2v)1�n
. (2.17)

The expression (2.17) is an exact result and it makes it clear that the 1⇤ ! n-point

amplitudes evaluated on the n-particle mass thresholds grow factorially with the number

– 8 –

Factorial growth!
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Several generalisations of this approach:         [More detail: also applies to phi^4 with SSB (Higgs-like)]

8

         Brown 9209203
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4

�
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�2
,

The classical equation for the spatially uniform field h(t),
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again has a closed-form solution with correct initial conditions hcl = v+ z+ . . .
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1 + z(t)

2v

1� z(t)
2v

, where z(t) = z0 e
iMht = z0 e

i
p
2� v t
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1X

n=0

✓
z(t)

2v

◆n

dn = v + 2v
1X

n=1

✓
z(t)

2v

◆n

,

i.e. with d0 = 1/2 and all dn�1 = 1.

A1!n =

✓
@

@z

◆n

hcl

����
z=0

= n! (2v)1�n Factorial growth!!

• Higgs like, ie. phi^4 with vev:

         [More detail: also applies to phi^4 with SSB (Higgs-like)]
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• Go beyond mass threshold (needs space-dep sol.):

[Brown ’92]

[Khoze ’14]

Similar story also holds in the Gauge-Higgs theory for tree-level 
amplitudes on multi-particle mass thresholds

10

          VVK 1404.4876
These equations are solved by iterations (numerically) with Mathematica. The
double Taylor expansion of the generating functions takes the form:

hcl(z, w
a) = 2v

1X

n=0

1X

k=0

d(n, 2k)
⇣ z

2v

⌘n
✓
wawa

(2v)2

◆k

,

Aa
L cl(z, w

a) = wa
1X

n=0

1X

k=0

a(n, 2k)
⇣ z

2v

⌘n
✓
wawa

(2v)2

◆k

,

where d(n, 2k) and a(n, 2k) are determined from the iterative solution of EOM.
By repeatedly di↵erentiating these with respect to z and wa for the Higgs

to n Higgses and m longitudinal Z bosons threshold amplitude we get,

A(h ! n⇥ h+m⇥ ZL) = (2v)1�n�m n!m! d(n,m) ,

and for the longitudinal Z decaying into n Higgses and m+ 1 vector bosons,

A(ZL ! n⇥ h+ (m+ 1)⇥ ZL) =
1

(2v)n+m
n! (m+ 1)! a(n,m) .

Factorial growth reemains (in n and in m) !

Similar story also holds in the Gauge-Higgs theory for tree-level 
amplitudes on multi-particle mass thresholds

10

          VVK 1404.4876
These equations are solved by iterations (numerically) with Mathematica. The
double Taylor expansion of the generating functions takes the form:

hcl(z, w
a) = 2v

1X

n=0

1X

k=0

d(n, 2k)
⇣ z

2v

⌘n
✓
wawa

(2v)2

◆k

,

Aa
L cl(z, w

a) = wa
1X

n=0

1X

k=0

a(n, 2k)
⇣ z

2v

⌘n
✓
wawa

(2v)2

◆k

,

where d(n, 2k) and a(n, 2k) are determined from the iterative solution of EOM.
By repeatedly di↵erentiating these with respect to z and wa for the Higgs

to n Higgses and m longitudinal Z bosons threshold amplitude we get,

A(h ! n⇥ h+m⇥ ZL) = (2v)1�n�m n!m! d(n,m) ,

and for the longitudinal Z decaying into n Higgses and m+ 1 vector bosons,

A(ZL ! n⇥ h+ (m+ 1)⇥ ZL) =
1

(2v)n+m
n! (m+ 1)! a(n,m) .

Factorial growth reemains (in n and in m) !

Higgs process
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• Gauge-Higgs theory: 
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Away from the multi-particle threshold, the external particles 3-momenta ~pi are
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contribution to the amplitudes is proportional to E kin
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In the non-relativistic limit we have " ⌧ 1.

Tree-level Amplitudes above mass thresholds are determined by 
recursive solutions to classical equations — now include the 
kinematic dependence
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remains a solution to the classical equation and the original recursion relations.

         Off-threshold in phi^4 with SSB (Higgs-like)

19

� (@µ@µ +M2
h)' = 3�v '2 + �'3

This classical equation for '(x) = h(x)� v determines directly the structure of
the recursion relation for tree-level scattering amplitudes:

(P 2
in �M2

h)An(p1 . . . pn) = 3�v
nX

n1,n2

�nn1+n2

X

P
An1(p

(1)
1 , . . . , p(1)n1

)An2(p
(2)
1 . . . p(2)n2

)

+�
nX

n1,n2,n3

�nn1+n2+n3

X

P
An1(p

(1)
1 . . . p(1)n1

)An2(p
(2)
1 . . . p(2)n2

)An3(p
(3)
1 . . . p(3)n2

)

Away from the multi-particle threshold, the external particles 3-momenta ~pi are
non-vanishing. In the non-relativistic limit, the leading momentum-dependent
contribution to the amplitudes is proportional to E kin

n (Galilean Symmetry),

An(p1 . . . pn) = An + Mn E
kin
n := An + Mn n " ,

" =
1

nMh
E kin

n =
1

n

1

2M2
h

nX

i=1

~p 2
i .

In the non-relativistic limit we have " ⌧ 1.

        Can now integrate over the phase-space

Above the n-particle thresholds:  
solution of the recursion relations
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Above the n-particle thresholds:  
solution of the recursion relations

DGL:

[Libanov, Rubakov, Son, Troitski ’94][Argyres, Kleiss, Papadopoulos ’92]
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How about loops?
Usual criticism: need to include loops to render cross section finite. 

Keep in mind, we calculate exclusive rate of massive internal and 
outgoing particles -> no mass-divergencies and observable IR-safe

scale E⇤. This will allow us to assess the e↵ect of Higgsplosion on the RG running of

the parameters of the theory, including their asymptotic safety. We will also see that the

so-called finite terms arising from the quantum e↵ect are the same as those computed in

[8–10] up to corrections of the order O(m2/E2
⇤). These considerations will pave the way

for computing precision observables in Higgsplosion in Section 4.

The quantum corrections to the tree-level amplitudes (2.28) are obtained by expanding

around the classical field, �(x) = �0(x)+�q(x), so that the Euclidean Lagrangian (2.1) for

the quantum fluctuation �q becomes,

L =
1

2
(@µ�q)

2 +
1

2

�
m2 + 3��2

0

�
�2
q + ��0�

3
q +

�

4
�4
q . (3.1)

One then integrates out �q(x) using the background field perturbation theory.

It follows that the generating functional of the amplitudes in the full quantum theory

is obtained by promoting the classical solution �0 into the quantum expectation value

h�i = �0 + h�qi. Individual amplitudes are then computed via

hn|�|0i =

✓
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(�0 + h�qi) |z0=0 . (3.2)

This provides the generalisation to full quantum theory [8, 9] of the tree-level formalism of

Brown [5] for computing 1⇤ ! n amplitudes on n-particle mass-thresholds.

The matrix element h�qi is computed using the Feynman rules following from the

action (3.1). It is easy to see that the one-loop contribution to h�qi comes from the tadpole

diagram, which contains the three-point vertex from (3.1) with two attached propagators

– one external, G(y, x), and one forming the loop, G(x, x),

h�q(y)i1�loop = (�3�)

Z
d4xG(y, x)�0(x)G(x, x) , (3.3)

G(x1, x2) is the propagator for the scalar field �q in the background of the classical solution,5

G(x1, x2) = h0|�q(x1)�q(x2)|0i , (3.4)

which satisfies the equation,
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+ m2 + 3��0(x1)

2

◆
G(x1, x2) = �(4)(x1 � x2) . (3.5)

The leading-order quantum correction h�qi1�loop obtained via (3.3) is the solution of the

di↵erential equation,
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+ m2 + 3��0(x)

2

◆
h�q(x)i1�loop = � 3��0(x)G(x, x) . (3.6)

5To distinguish the propagator in the background of �0(t) from the propagator in the trivial background,

we call it G rather than �. We also continue working in Euclidean space and thus drop the T -ordering in

the propagator.
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Loop corrections calculated by expanding around classical field 
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Euclidean Lagrangian becomes

After promoting classical solution      to quantum expectation value
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Individual amplitudes calculated via gen. functional
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Use Feynman rules of Eucl. Lagrangian and calculate
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[Smith ‘92]
[Voloshin ‘92]

[Voloshin ‘17]

You will find for the combined tree + 1-loop 
generating functional

The only non-trivial modification of the average field given by equation (11) is

related to the finite part of the average value of the square of quantum fluctuations

(eq.(22)), proportional to the constant factor F . If one seeks the solution of the

equation (11) in the form φ(t) = φ0(t; m̄, λ̄) + φ1(t), where the renormalization of

the constants is plugged into the functional dependence of the classical solution, the

equation for the correction φ1(τ) (i.e. on the τ axis) reads as

(

d2

dτ 2
− 1 +

24u2

(1 + u2)2

)

φ1 = −i18λ

√

8

λ
F

u5

(1 + u2)5
, (28)

the condition on the appropriate solution to this equation being that its expansion in

u starts with the fifth power, since only starting from final states with five particles the

threshold amplitudes develop an imaginary part, which in this calculation originates

in the imaginary part of F . The solution satisfying this condition is

φ1(τ) = −i
3λ

4

√

8

λ
F

u5

(1 + u2)3
, (29)

. Using equation (14) one can readily restore from here the response of the field in

terms of z(t) with the first quantum correction included:

φ0+1(t) =
z(t)

1 − (λ̄/8m̄2)z(t)2

(

1 −
3λ

4
F

(λ/8m2)2z(t)4

(1 − (λ/8m2)z(t)2)2

)

(30)

and by expanding in series in z(t) finally arrive at the result in equation (2).

The rotation (14) used here may invite the objection, that such rotation in the

path integral is obstructed by the infinite chain of poles parallel to the real axis of

t, which may give rise to extra contributions in the quantum effects. However it can

be explicitly shown that this does not happen at least at the one-loop level. Namely,

it is a straightforward (but rather cumbersome) exercise to verify that the recursion

relations for the sum of graphs for the propagator of the field φ with emission of n

on-shell particles all being at rest are equivalent to the differential equation for the

Green function of the operator (17) and then that the recursion relations for the loop

graphs are equivalent to the equation (28) on the τ axis. Another simple (and in no

way rigorous) check is to verify the formula (2) for few first n by direct computation

of the graphs. This also turned to be helpful in checking the relative coefficients and

signs in the equations of this paper. The remarkably simple form of the result (2)

suggests that there may be a way to calculate further quantum effects. In particular
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 One obtains for scalar loops

Multiple production of weakly interacting particles is naturally suppressed by a corre-

sponding high power of small coupling constant. However the number of graphs describing

the production amplitude also grows factorially so that the yield of, say n Higgs bosons, at

sufficiently high energy contains the factor n!λn that hints at the total cross section possibly

becoming large at large n, n > 1/λ as the factorial n! overcomes the high power of the small

Higgs coupling λ. The tantalizing prospect of finding a large yield in multiparticle weak

interaction processes had stimulated great interest and intensive studies in the early 1990’s

(a review can be found in Ref. [1]). The general conclusion from that past activity, although

not entirely certain, was that the seemingly large probability at large n, is likely a “mirage”

caused by extrapolation of low n results, and that the actual probability at large n is sup-

pressed by higher loop effects and/or a strong form factor cutoff [1, 2, 3]. Recently there

has been a certain revival of interest both to the methods developed in the course of those

studies, in particular in connection with the possibility of double Higgs boson production at

LHC [4], and to the idea of an observably large cross section for production of multiple weak

interaction bosons at multi TeV energies [5, 6, 7]. The latter idea is being discussed using the

past results found in simplified models. In particular, for a purely multi Higgs boson process

1 → n, where one virtual Higgs particle produces n bosons, the behavior of the rate R in a

theory of the scalar field was shown [8, 9] to obey the scaling behavior R ∼ exp[nF (nλ, ϵ)]

in the limit n → ∞, λ → 0, nλ-fixed, and ϵ being the kinetic energy per final particle. The

amplitude for this process at ϵ = 0, i.e. exactly at the threshold for n scalar bosons, is in

fact known explicitly at the tree level [10, 11, 12] as well as with the one loop correction

generated by the scalar field self interaction [13, 14]:

An = n! (2v)1−n

[

1 + n(n− 1)

√
3λ

8π
+O(λ2)

]

, (1)

where v is the (classical) vacuum mean value of the scalar field, related to the coupling λ

and the scalar mass µ as µ2 = 2λ v2. Clearly, this expression is in agreement with the scaling

behavior, once the loop correction is exponentiated [8].

It should be pointed out however that the scaling behavior is only applicable in a theory

of one bosonic field with one coupling. In a theory where the considered scalar field interacts

with heavy particles the scaling behavior is in fact not sustainable and is generally broken by

loops with heavy particles. Indeed, if the scalar field four-momentum is neglected, integrating

out heavy particles produces an effective Lagrangian with powers of the considered bosonic

field φ: ξk φk, and where ξk are the corresponding couplings. One can readily verify that

inserting such vertex in interaction between n final particles results in a correction with

1

and including fermion loops it is argued cancellations can occur

relative value nk−2ξk. Clearly, the approximation where the four-momentum of the scalar

particles can be neglected is not applicable if the total mass of a cluster of k scalar bosons

is larger than the mass M of the particle in the loop. Thus the power of n in the relative

correction due to the loop is of order M/µ and at sufficiently large ratio of the masses

becomes larger than two in violation of the scaling law. In connection with this behavior in

the only case of potentially practical interest, i.e. for the actual Higgs field, the effect of the

top quark loop certainly merits a detailed consideration. In what follows the correction to

the amplitude An in Eq.(1) generated by a loop with a fermion acquiring all of its mass m

from the interaction with the Higgs field is calculated in the limit of large n. As expected

from the reasoning outlined above the power of n in this correction is determined by the

ratio of the masses r = m/µ:

An → An ×
[

1 + (−1)2r C(r)n4r−4 λ
]

(2)

With the coefficient C(r) given by Eq.(27) below. The imaginary part of the correction

contained in the factor (−1)2r corresponds to the unitary cut across the fermion loop. This

imaginary part vanishes when 2r is integer. This is a consequence of the property of ‘nulli-

fication’ [15] at integer ratio 2m/µ, i.e. of the exact cancellation to zero of all the on-shell

amplitudes for fermion-antifermion annihilation into any number of higgs bosons all being

at rest.

One can readily estimate that with m and µ being the actual top quark and Higgs boson

masses, m/µ ≈ 1.4, the power of n in the correction is 1.6 and is smaller than two. Thus the

purely bosonic correction in Eq.(1) formally exceeds the effect of the top loop at sufficiently

large n. However the coefficient C(r) is actually numerically large, (−1)2.8C(1.4) ≈ −(8.0−
i 5.8)

√
3/(8π). Thus the bosonic term equals the real part of the contribution of the top

loop at n0.4 ≈ 8 i.e. at n ≈ 180. Clearly, at such n each of the corrections becomes very

large and far beyond any reasonable justification for considering them in the first order. It

thus appears impossible, at the present level of understanding of multi boson processes, to

come to any conclusions about their phenomenological significance.

Furthermore, it not yet excluded that there exist heavy fermions and bosons that acquire

from the Higgs field a larger mass than that of the top quark. Their loops would then

generate corrections to the multi Higgs processes with the power of n larger than two, and

those contributions would thus explicitly violate the scaling behavior and be potentially very

important.

The rest of this paper contains a somewhat detailed outline of the calculation of the
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From amplitudes to cross sections
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overall multiplicative factors in the amplitudes.
In the next section we will integrate these amplitudes over the phase space in order to

estimate the rates for these processes.

4 Integrating over the phase space

The scattering cross sections for multi-particle production rates arise from integrating the
squared amplitudes (3.49)-(3.50) over the Lorentz-invariant phase space,
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Z
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1

n!m!
|Ah⇤!n⇥h+m⇥ZL |

2
, (4.1)

where 1/n! and 1/m! are the Bose statistics factors accounting for the n identical Higgses and
m identical longitudinal vector boson states, and we have dropped the overall flux factor on the
r.h.s. of (4.1). The next step is to integrate over phase space. The n-particle Lorentz-invariant
phase space volume element has the familiar form,
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but in order to use in (4.1) our results for the amplitudes (3.49) within their region of validity
– i.e. the high-multiplicity non-relativistic limit – the phase space integrations have to be
performed in the same non-relativistic approximation.

We note that it should not come as a surprise that the large-n small-" limit will amount to
a very small phase-space volume. Indeed, a very rough estimate for the phase-space volume in
this approximation will be �n / M

3n
⇥"

3n/2. In dimensionless units, it arises from the product
of n three-dimensional spherical volumes obtained by integrating over each of the final particle
momenta |p|i . M

p
2". It is then not surprising that the resulting volume of the non-relativistic

n-particle phase-space reduces the cross section by the factor / "
3n/2 which is ⌧ 1 in the limit

" ! 0 and n � 1. We will confirm this estimate with a more precise computation below, but
it is important to stress from the outset that the suppression of the resulting cross sections at
moderate energies is entirely caused by the non-relativistic approximation used in computing
the phase-space volume, and is not driven by the form of the amplitudes squared. In order to
compute the rate in the more realistic settings, one should integrate over a larger portion of the
phase-space. In the present paper we will not pursue this route as this would require knowing
the amplitudes beyond the non-relativistic limit.

The phase-space integration in the large-n non-relativistic limit with n"h fixed is easily
carried out by integrating over the d3np volume of the 3n-dimensional of radius |p| = Mh

p
2n"h.

The resulting non-relativistic phase space volume in the large-n limit is (see e.g. [15]),
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Figure 2: Amplitude coe�cients of Figure 1 in the form 2 log(md(n,m)) and 2 log(ma(n,m))
appearing in Eqs. (4.6)-(5.6). The label n = 0, 1, . . . , 32 is shown along the horizontal axis and
the sequence of curves corresponds to m = 0, 2, . . . , 32 with m increasing from bottom to top
(on the right of each plot).
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Repeating the same steps for vector boson emissions we now can write down the rate for the
high multiplicity n-Higgs + m-vector boson production corresponding to the amplitude (3.49),
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The cross section arising from the amplitude (3.50) takes the same form as (4.5) but with
the 2 log a(n,m) factor on the right hand side. The numerical coe�cients d(n,m) and a(n,m)
were derived in [5] by solving recursion relations for the amplitudes on the multi-particle mass
threshold; they are plotted in Fig. 1.

At m = 0 all d-coe�cients are equal to one, hence the first term on the right hand side
vanishes in this case, 2 log d(n,m = 0) = 0. At higher values of m, however the coe�cients
d(n,m) and a(n,m) start growing. To somewhat tame the numerical growth of the Taylor
coe�cients we can rescale them with a factor of m and this can be nicely combined with the

observation that m log(g
2m
32 ) = m log(2)+m log(�m4 ) which facilitates a re-write of (4.5) in the

form:
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on the right hand side are shown in Fig. 2.
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Figure 2: Amplitude coe�cients of Figure 1 in the form 2 log(md(n,m)) and 2 log(ma(n,m))
appearing in Eqs. (4.6)-(5.6). The label n = 0, 1, . . . , 32 is shown along the horizontal axis and
the sequence of curves corresponds to m = 0, 2, . . . , 32 with m increasing from bottom to top
(on the right of each plot).
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[Son ’95]

For         loops overpower tree result,  
how about semi-classical approach?

• Multiparticle decay rates     can be calculated using semi-classical method

intrinsically non-perturbative method

m
2 ' z(1� z)p2

T
✓
2
12 (85)

R � mp
z(1� z)pT

& 2m

pT
(86)

P (z) ⇠ 1 + z
2

1� z
(87)

1

�

d�

dm2
⇠ 1

m2
↵s ln

R
2
p
2
T

m2
(88)

⌃ =
1X

n=1

⌃n ! 1 (89)

nmax =

p
p2

M
(90)

�(p2) ⇠ Im ⌃(p2) (91)

Im ⌃(p2) '
nmaxX

n=1

�n = finite sum (92)

p
2 (93)

�n(E) (94)

�n (95)

6

no reference to perturbation theory

• Path-integral calculated in deepest descend method, where

• Semi-classical calculation in regime where 

reproduces tree-level perturbative result for non-relativistic final states 

Remarkably this semi-classical calculation also reproduces the 1-loop 
resummed calculation in this limit

�S

�h(x)
= 0 (105)

t ! +1 (106)

h(x) (107)

t ! �1 (108)

✓ (109)

T (110)

W (E, n) (111)

Rn(E) = exp [W (E, n)] (112)

h1(⌧, ~x) (113)

h2(⌧, ~x) (114)

⌧ = ⌧0(~x) (115)

h(x) (116)

⌧ = ⌧0(~x) (117)

�n(p
2) (118)

�tot(p
2) (119)

n� > 1 (120)

7
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Just like in the case of Brown’s solution for diagrams in perturbation 

theory, is the self-energy         calculated semi-classically

which is proportional to the imaginary part of the self-energy,

Im ⌃̂n(p2) = � m �n(p2) ⇠ |g̃(
p

p2)|2 R
semicl
n (

p
p2) , (3.28)

where R
semicl
n (

p
p2) is the semiclassical prediction for the Higgsplosion rate, which becomes

exponentially large above a certain energy scale p
2

� E
2
⇤ . As in (2.16) and (3.27) we have

included on the right hand side of (3.28) the smearing e↵ect of the test functions.

The self-energy contribution in (3.28) can now be resummed to obtain the full Dyson

propagator,

�̃(p) =
i

p2 � m2 � ⌃̂(p2) + i✏
. (3.29)

We can always choose the test functions on the right hand side of (3.28) such that they

allow the imaginary part of self-energy to become greater than p
2, at the Higgsplosion scale

p
2
⇤ i.e. |⌃̂(p2⇤)| & p

2
⇤ before they cut-o↵ the exponential growth of Im ⌃ at asymptotically

large momenta � p
2
⇤. In this case the expression (3.29) for the Dyson propagator becomes

exponentially small at the Higgsplosion scale as the result of the large self-energy contri-

bution in the denominator. We conclude that the fall o↵ of the propagator at p
2 above

the Higgsplosion scale (and before the test functions cut-o↵ the self-energy at asymptot-

ically high momenta) is entirely consistent with the phenomenon of Higgspersion of the

resummed Dyson propagator proposed in [1, 24].

4 Conclusions

If Higgsplosion can be realised in the Standard Model, its consequences for particle theory

would be astounding. Higgsplosion would result in an exponential suppression of quantum

fluctuations beyond the Higgsplosion energy scale and have observable consequences at

future high-energy colliders and in cosmology [24–28].

Production of large numbers of particles in scattering processes at very high energies

was studied in great detail in the classic papers [12, 17, 18, 29–32], and more recently

in [33]. These papers largely relied on calculations in perturbation theory, which in the

regime of interest for Higgsplosion, n & 1/� � 1, is strongly coupled and calls for a robust

non-perturbative formalism. Semiclassical methods [4, 5, 13] provide a way to achieve this.

At present, Higgsplosion remains a conjecture based on the application of the semiclas-

sical approach of [4] to scalar QFT models of the type (2.1) in the non-relativistic large-n

steepest descent limit in the calculations in [2, 3].6

In the semiclassical limit a theory with Higgsplosion results in an exponentially growing

expression for the spectral density distribution function ⇢(s). This implies that the spectral

density cannot be a tempered distribution. This is a trivial statement, it relies solely on

the definition of tempered distributions – which are those that grow at large
p

s at most

6
The semiclassical technique used in [2, 3] is reliant on using QFT (i.e. a system with an infinite number

of degrees of freedom) in not less than 2+1 dimensions and spontaneous symmetry breaking. For example,

it is known that in a finite dimensional quantum mechanics the analogues of high-multiplicity amplitudes

are exponentially suppressed [34, 35].
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Figure 1: Sketch of a classical field configuration with a single jump in energy at the singular point

x = 0. Such configurations can give dominant contributions to the 1PI matrix elements but not

to the one-particle-reducible ones. The latter would necessarily require more jumps with vanishing

energies.

p
s at a point t3 > t2. This is depicted in Fig. 2. Hence we conclude that the simple saddle-

point solutions that have a single energy jump at a single singularity point in Minkowsky

space – which are the saddle-points considered in the semiclassical approach – approximate

the one-particle-irreducible matrix elements, as indicated by the 1PI subscript on the right

hand side of (2.6).
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the matrix element

advocated in [4, 14] is to first describe the initial state as a multi-particle state with c/�

particles in |Xi and then take the limit c ! 0.

Technically, this is achieved by assuming that the initial state is prepared by acting

with a certain local operator Ô(x) on the vacuum. Without loss of generality, by translation

invariance one can position this operator at x = 0,

|Xi = O(0) |0i . (2.4)

For carrying out the semiclassical calculation the following choice of the operator is usually
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O(x) = j
�1

e
j�(x)

, (2.5)

where j is a constant j = c/�. Finally one takes the limit c ! 0 (or equivalently j ! 0)
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state with the low particle occupation number, as required.

We will assume the operational validity of the prescription in (2.4)-(2.5) and treat it

as a part of the definition of the semiclassical approach of Son [4], on which the calculation
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rate on the specific form of the operator O(x) a↵ects only the pre-exponential factor and

not the semiclassical exponent of Rn(
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s) in (2.2). The semiclassical exponent itself should

not depend on the precise nature of the initial state X as far as it is not a multi-particle

state.
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1-particle-irreduciuble matrix element,
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†
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p
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†
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• Semi-classical calculation is applicable and more relevant for non-
perturbative regime of Higgsplosion, where

• This calculation was carried out with result given by
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With these corrections to f0, we can write
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which have both been plotted as a function of the number of final state particles in Figs.

6 and 7. First we will discuss the e↵ects of 1-loop corrections in general compared to

tree level, then we will discuss the di↵erences in the two 1-loop corrections. We can see

that the general profile of R1-loop is roughly the same as Rtree which is to be expected as

there must be a rise due to the factorial growth and the 1-loop enhancement followed by

a decline as we near the edge of the phase space volume. The 1-loop correction seems to

have caused the peaks to occur at values closer to nmax indicating that more of the initial

state energy is going into producing final state particles.

The most striking di↵erence between Rtree and R1-loop is that the critical energy requi-

red to see the sharp growth in R1-loop is an order of magnitude lower than that for Rtree

at Eresummed
crit ⇡ O(30) TeV and Esemiclassical

crit ⇡ O(25) TeV. This di↵erence is obviously due

to the enhancement in growth from the 1-loop corrections. However, what is surprising is

that the 1-loop correction from the semiclassical approach has the lowest critical energy.

Naively, by looking at the form of the corrections, it was expected that the resummed

correction would have the lowest critical energy because it scales as n where as the semi-

classical correction scales as
p
n. Both corrections have been plotted in Fig. 8 where we

can see that the semiclassical correction is larger than the resummed correction up until

n ⇡ 306 = noverlap where the linear growth in n takes over.

Of course, if we consider two functions f1(x) = x and f2(x) =
p
x, we recognise that

f2 is always larger than f1 until x > 1, therefore, drawing parallels with the two di↵erent

1-loop corrections, we can conclude that the prefactors dictate the point at which the two

corrections overlap. If we take the ratio of the prefactors we get 3.02
q
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FIG. 6: R
resummed
1-loop plotted as a function of n with a range of centre of mass energies

illustrating the exponential growth of R1-loop at the critical energy, Ecrit ⇡ 260Mh. The plot

on the right shows that " is always less than 1 in the region of interest.
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using the semi-classical approach and the thin-wall approximation 

Thus we have computed the rate R in the large lambda n limit: 
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Figure 1: Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state
into n Higgs bosons h plotted as function of n. The four lines correspond to the energies of the
initial state equal 190Mh, 195Mh, 200Mh and 205Mh, as indicated. There is a sharp exponential
dependence of the peak rate on the energy varying from R . 10�6 at E = 190Mh (red line) to
R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.

Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [8]. These results will be reported in a forthcoming publication [19].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form

⇡ +3.02n
q

�n
4⇡ .

As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [19]
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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• Massive energy 
dependence

• Very narrow - 
resonance-like - 
peak in n

The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp


�
7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where

" =

p
s� nMh

nMh
=

1

nMh
E kin

n '
1

n

1

2M2
h

nX

i=1

~p 2
i , (3.5)

so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,

A
thr.
1!n = n! (2v)1�n = n!

✓
�

M2
h

◆n�1
2

, (3.6)

or, equivalently, after the LSZ reduction of the incoming line,

M
thr.
1!n = n! (n2

� 1)
�

n�1
2

Mn�3
h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is
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and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain
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Figure 1: Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state
into n Higgs bosons h plotted as function of n. The four lines correspond to the energies of the
initial state equal 190Mh, 195Mh, 200Mh and 205Mh, as indicated. There is a sharp exponential
dependence of the peak rate on the energy varying from R . 10�6 at E = 190Mh (red line) to
R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.
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near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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Schwinger-Dyson-propagator and optical theorem

and a similar model with spontaneous symmetry breaking (SSB), where the scalar field has

a non-zero VEV h�i = v,

L =
1

2
@µ�@µ� � �

4

�
�2 � v2

�2
, (2.2)

�(x) = v + h(x) , mh =
p
2� v . (2.3)

In the SSB case (2.2)-(2.3), mh is the mass of the physical scalar field h(x). As in our earlier

work [1, 2, 14] we will view the SSB theory (2.2) as a simplified model for the Standard

Model Higgs sector in the unitary gauge.

In a generic QFT model with a massive scalar, we can define the following quantities:

1. The Feynman propagator of � is the Fourier transform of the 2-point Green function,

�(p) =

Z
d4x eip·xh0|T (�(x)�(0)) |0i =

i

p2 � m2
0 � ⌃(p2) + i✏

, (2.4)

where m0 is the bare (unrenormalised) mass of the scalar field �.

2. The self-energy ⌃(p2) is the the sum of all one-particle-irreducible (1PI) diagrams

contributing to the 2-point function,

� i⌃(p2) =
X

�(1PI) � . (2.5)

The right-hand side of Eq. (2.4) can be interpreted in perturbation theory as the sum

over the infinite series of the bare propagators and the ⌃(p2) insertions,

i

p2 � m2
0 � ⌃(p2)

=
i

p2 � m2
0

+
i

p2 � m2
0

1X

n=1

✓
�i⌃(p2)

i

p2 � m2
0

◆n

. (2.6)

Hence Eq. (2.4) gives the full quantum propagator, also known as the Dyson propa-

gator [15–17], valid in perturbative and non-perturbative quantum field theories.

3. The physical (or pole) mass m is defined as the pole of the quantum propagator (2.4),

m2 � m2
0 � ⌃(m2) = 0 , or m2 = m2

0 + ⌃(m2) . (2.7)

4. The field renormalisation constant Z� is determined from the slope of ⌃(p2) at m2,

Z� =

 
1 � d⌃

dp2

����
p2=m2

!�1

. (2.8)

Using the definition of the pole mass (2.7) and the renormalisation constant Z� in

(2.8), the full propagator (2.4) can be written as,

�(p) =
iZ�

p2 � m2 � Z�[⌃(p2) � ⌃(m2) � ⌃0(m2)(p2 � m2)]
. (2.9)

– 3 –

SD propagator, valid in perturbative and non-perturbative QFT

and a similar model with spontaneous symmetry breaking (SSB), where the scalar field has

a non-zero VEV h�i = v,

L =
1

2
@µ�@µ� � �

4

�
�2 � v2

�2
, (2.2)

�(x) = v + h(x) , mh =
p
2� v . (2.3)

In the SSB case (2.2)-(2.3), mh is the mass of the physical scalar field h(x). As in our earlier

work [1, 2, 14] we will view the SSB theory (2.2) as a simplified model for the Standard

Model Higgs sector in the unitary gauge.

In a generic QFT model with a massive scalar, we can define the following quantities:

1. The Feynman propagator of � is the Fourier transform of the 2-point Green function,

�(p) =

Z
d4x eip·xh0|T (�(x)�(0)) |0i =

i

p2 � m2
0 � ⌃(p2) + i✏

, (2.4)

where m0 is the bare (unrenormalised) mass of the scalar field �.

2. The self-energy ⌃(p2) is the the sum of all one-particle-irreducible (1PI) diagrams

contributing to the 2-point function,

� i⌃(p2) =
X

�(1PI) � . (2.5)

The right-hand side of Eq. (2.4) can be interpreted in perturbation theory as the sum

over the infinite series of the bare propagators and the ⌃(p2) insertions,

i

p2 � m2
0 � ⌃(p2)

=
i

p2 � m2
0

+
i

p2 � m2
0

1X

n=1

✓
�i⌃(p2)

i

p2 � m2
0

◆n

. (2.6)

Hence Eq. (2.4) gives the full quantum propagator, also known as the Dyson propa-

gator [15–17], valid in perturbative and non-perturbative quantum field theories.

3. The physical (or pole) mass m is defined as the pole of the quantum propagator (2.4),

m2 � m2
0 � ⌃(m2) = 0 , or m2 = m2

0 + ⌃(m2) . (2.7)

4. The field renormalisation constant Z� is determined from the slope of ⌃(p2) at m2,

Z� =

 
1 � d⌃

dp2

����
p2=m2

!�1

. (2.8)

Using the definition of the pole mass (2.7) and the renormalisation constant Z� in

(2.8), the full propagator (2.4) can be written as,

�(p) =
iZ�

p2 � m2 � Z�[⌃(p2) � ⌃(m2) � ⌃0(m2)(p2 � m2)]
. (2.9)

– 3 –

where and the physical (pole) mass is 

and a similar model with spontaneous symmetry breaking (SSB), where the scalar field has

a non-zero VEV h�i = v,

L =
1

2
@µ�@µ� � �

4

�
�2 � v2

�2
, (2.2)

�(x) = v + h(x) , mh =
p
2� v . (2.3)

In the SSB case (2.2)-(2.3), mh is the mass of the physical scalar field h(x). As in our earlier

work [1, 2, 14] we will view the SSB theory (2.2) as a simplified model for the Standard

Model Higgs sector in the unitary gauge.

In a generic QFT model with a massive scalar, we can define the following quantities:

1. The Feynman propagator of � is the Fourier transform of the 2-point Green function,

�(p) =

Z
d4x eip·xh0|T (�(x)�(0)) |0i =

i

p2 � m2
0 � ⌃(p2) + i✏

, (2.4)

where m0 is the bare (unrenormalised) mass of the scalar field �.

2. The self-energy ⌃(p2) is the the sum of all one-particle-irreducible (1PI) diagrams

contributing to the 2-point function,

� i⌃(p2) =
X

�(1PI) � . (2.5)

The right-hand side of Eq. (2.4) can be interpreted in perturbation theory as the sum

over the infinite series of the bare propagators and the ⌃(p2) insertions,

i

p2 � m2
0 � ⌃(p2)

=
i

p2 � m2
0

+
i

p2 � m2
0

1X

n=1

✓
�i⌃(p2)

i

p2 � m2
0

◆n

. (2.6)

Hence Eq. (2.4) gives the full quantum propagator, also known as the Dyson propa-

gator [15–17], valid in perturbative and non-perturbative quantum field theories.

3. The physical (or pole) mass m is defined as the pole of the quantum propagator (2.4),

m2 � m2
0 � ⌃(m2) = 0 , or m2 = m2

0 + ⌃(m2) . (2.7)

4. The field renormalisation constant Z� is determined from the slope of ⌃(p2) at m2,

Z� =

 
1 � d⌃

dp2

����
p2=m2

!�1

. (2.8)

Using the definition of the pole mass (2.7) and the renormalisation constant Z� in

(2.8), the full propagator (2.4) can be written as,

�(p) =
iZ�

p2 � m2 � Z�[⌃(p2) � ⌃(m2) � ⌃0(m2)(p2 � m2)]
. (2.9)

– 3 –

with the renormalisation constant 

and a similar model with spontaneous symmetry breaking (SSB), where the scalar field has

a non-zero VEV h�i = v,

L =
1

2
@µ�@µ� � �

4

�
�2 � v2

�2
, (2.2)

�(x) = v + h(x) , mh =
p
2� v . (2.3)

In the SSB case (2.2)-(2.3), mh is the mass of the physical scalar field h(x). As in our earlier

work [1, 2, 14] we will view the SSB theory (2.2) as a simplified model for the Standard

Model Higgs sector in the unitary gauge.

In a generic QFT model with a massive scalar, we can define the following quantities:

1. The Feynman propagator of � is the Fourier transform of the 2-point Green function,

�(p) =

Z
d4x eip·xh0|T (�(x)�(0)) |0i =

i

p2 � m2
0 � ⌃(p2) + i✏

, (2.4)

where m0 is the bare (unrenormalised) mass of the scalar field �.

2. The self-energy ⌃(p2) is the the sum of all one-particle-irreducible (1PI) diagrams

contributing to the 2-point function,

� i⌃(p2) =
X

�(1PI) � . (2.5)

The right-hand side of Eq. (2.4) can be interpreted in perturbation theory as the sum

over the infinite series of the bare propagators and the ⌃(p2) insertions,

i

p2 � m2
0 � ⌃(p2)

=
i

p2 � m2
0

+
i

p2 � m2
0

1X

n=1

✓
�i⌃(p2)

i

p2 � m2
0

◆n

. (2.6)

Hence Eq. (2.4) gives the full quantum propagator, also known as the Dyson propa-

gator [15–17], valid in perturbative and non-perturbative quantum field theories.

3. The physical (or pole) mass m is defined as the pole of the quantum propagator (2.4),

m2 � m2
0 � ⌃(m2) = 0 , or m2 = m2

0 + ⌃(m2) . (2.7)

4. The field renormalisation constant Z� is determined from the slope of ⌃(p2) at m2,

Z� =

 
1 � d⌃

dp2

����
p2=m2

!�1

. (2.8)

Using the definition of the pole mass (2.7) and the renormalisation constant Z� in

(2.8), the full propagator (2.4) can be written as,

�(p) =
iZ�

p2 � m2 � Z�[⌃(p2) � ⌃(m2) � ⌃0(m2)(p2 � m2)]
. (2.9)

– 3 –

we define the renorm. quantities
5. The Z� constant is used to define the renormalised quantities �R(p) and ⌃R(p2),

�R(p) = Z (�1)
� �(p) , (2.10)

⌃R(p) = Z�

�
⌃(p2) � ⌃(m2) � ⌃0(m2)(p2 � m2)

�
. (2.11)

Hence, the result for the renormalised propagator in terms of all finite quantities is,

�R(p) =
i

p2 � m2 � ⌃R(p2) + i✏
. (2.12)

6. The optical theorem provides the physical interpretation of the imaginary part of the

self-energy in terms of the momentum-scale dependent decay width �(p2),

� Im⌃R(p
2) = m�(p2) , (2.13)

with the decay width being determined by the partial widths of n-particle decays at

energies s � (nm)2,

�(s) =
1X

n=2

�n(s) , �n(s) =
1

2m

Z
d�n

n!
|M(1 ! n)|2 . (2.14)

Here M is the amplitude for the 1⇤ ! n process, the integral is over the n-particle

Lorentz-invariant phase space, and 1/n! is the Bose-Einstein symmetry factor for n

spin-zero particles produced in the final state.

7. The origin of Higgsplosion [1] is that the scattering amplitudes M(1 ! n), and con-

sequentially the decay rates into the n-particle final states, grow factorially with n

in the large-n limit, 1
n! |Mn|2 ⇠ n!�n ⇠ en log(�n). When n scales linearly with the

available energy, n ⇠
p
s/m, this translates into the exponential dependence of the

decay rate �(s) on
p
s. It was further argued in [1, 14] that there is a sharp transi-

tion between the exponential suppression, �n(s < E2
⇤)/m ⌧ 1, and the exponential

growth, �n(s > E2
⇤)/m � 1, for the n-particle rate at a certain characteristic energy

scale E⇤ (and in a large-n limit that is still allowed by kinematics, n . p
s/m). Hence

in a Higgsploding theory, the propagator,

�R(p) =
i

p2 � m2 � Re⌃R(p2) + im�(p2) + i✏
, (2.15)

is e↵ectively cut o↵ at p2 � E2
⇤ by the exploding width �(p2) of the propagating

state into the high-multiplicity final states. The incoming highly energetic state

decays rapidly into the multi-particle state made out of soft quanta with momenta

k2i ⇠ m2 n E2
⇤ . The width of the propagating degree of freedom becomes much

greater than its mass: it is no longer a simple particle state. In this sense, it has

become a composite state made out of the n soft particle quanta of the same field �.

The main purpose of the summary above is to demonstrate that there are no apparent

subtleties that arise when accounting for the UV-renormalisation e↵ects in the expression
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s/m). Hence

in a Higgsploding theory, the propagator,
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⇤ by the exploding width �(p2) of the propagating

state into the high-multiplicity final states. The incoming highly energetic state

decays rapidly into the multi-particle state made out of soft quanta with momenta

k2i ⇠ m2 n E2
⇤ . The width of the propagating degree of freedom becomes much

greater than its mass: it is no longer a simple particle state. In this sense, it has

become a composite state made out of the n soft particle quanta of the same field �.

The main purpose of the summary above is to demonstrate that there are no apparent
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Schwinger-Dyson-propagator and optical theorem
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No information as 
perturbation theory breaks 
down for many loops, but no 
physical reason to explode 
or cancel imaginary part

Higgsplodes

[Khoze, MS ’17]
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“It is just like asymptotic perturbative series! 

We always expected it to break down!”

Except, its not…

Not the same types of beasts

Asymptotic behaviour of large order in 
perturbation theory

stop here

n! growth

order of 
pert. 
seriesdivergent tail
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e.g. [Broadhurst, Kreimer ’99]
[Dyson ’52]
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Previous calculations neglected ‘width’/self-energy contribution to scalar 
propagator

-> no violation of perturbative unitarity for large multiplicities

Higgspersion [Khoze, MS ’17]

Extreme energy dependence for 1  ->  n cross section

[Khoze ’15]
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including 1-loop result reduces ‘ignition’ scale
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp


�
7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where

" =

p
s� nMh

nMh
=

1

nMh
E kin

n '
1

n

1

2M2
h

nX

i=1

~p 2
i , (3.5)

so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,

A
thr.
1!n = n! (2v)1�n = n!

✓
�

M2
h

◆n�1
2

, (3.6)

or, equivalently, after the LSZ reduction of the incoming line,

M
thr.
1!n = n! (n2

� 1)
�

n�1
2

Mn�3
h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain

6

the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:

R(�;n, ") = exp
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�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),

f0(�n) = log

✓
�n

4

◆
� 1 , (3.12)
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,

f0(�n)
1�loop = log

✓
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3
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4⇡
. (3.14)
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Explosive growth of 1->n process
Extreme energy dependence for 1  ->  n cross section
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were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp
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�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where
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p
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2M2
h

nX
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~p 2
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so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,

A
thr.
1!n = n! (2v)1�n = n!
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M2
h

◆n�1
2

, (3.6)

or, equivalently, after the LSZ reduction of the incoming line,

M
thr.
1!n = n! (n2

� 1)
�

n�1
2

Mn�3
h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain
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the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:
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�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),

f0(�n) = log
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,

f0(�n)
1�loop = log
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. (3.14)
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the center-of-mass energy
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s = E linearly with n, E / n, keeping the copupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp
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Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where
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so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,
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or, equivalently, after the LSZ reduction of the incoming line,
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which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain
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In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1
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2
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⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,
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Continuous resummation of the SD propagator does not shut down imaginary part. 
You need to consider the self-energy as one object.
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Figure 1: Dominant contributions to the self-energy of the Higgs boson from interference terms
between sub-amplitudes for all possible combinations of n1, n2, ñ1 and ñ2, where n1+n2 = ñ1+ñ2 =
n. Such diagrams contain only multi-particle cuts in the ‘t-channel’.
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Figure 2: Subleading contributions to ⌃h(p2) with no interference between the sub-amplitudes.
These non-interference diagrams can be cleanly separated into mutually independent dressed prop-
agators in the loop. These diagrams are 2-particle reducible in the ‘t-channel’.

We thus are led to a retrospectively obvious conclusion that Higgsplosion is a result of

taking into account all interference e↵ects between individual diagrams. These diagrams

are sketched in Fig. 1 and correspond to the sum of all possible combinations of n1, n2, ñ1

and ñ2, where n1 + n2 = ñ1 + ñ2 = n. This is to be compared with the diagrams depicted

in Fig. 2, where the cross terms between the An1 and An2 sub-amplitudes on the left and

on the right of the cut were not included. As a result, the diagrams in Fig. 2 are subleading

relative to those in Fig. 1, and do not lead to Higgsplosion.

What does lead to Higgsplosion is the correct accounting of the interference e↵ects in

the product of the two amplitudes. For reader’s convenience and for future reference we

will now also present a more technical rendering of the above n!-counting argument for

Higgsplosion from intereference, based on the technique of generating n-point amplitudes

from classical solutions. (Readers already familiar with this argument can directly skip to

the next section 2.2.2.)

A more technical argument: Ah⇤!n⇥h from classical solutions

At tree-level, all n-point scattering amplitudes for an o↵-shell field h
⇤ to produce n Higgs

particles,

h
⇤ ! n⇥ h , (2.10)

can be obtained from solving the Euler-Lagrange equations and following the generating

functions formalism of Brown [2]. For simplicity, as in Ref. [1], we will assume a simplified
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Figure 1: Dominant contributions to the self-energy of the Higgs boson from interference terms
between sub-amplitudes for all possible combinations of n1, n2, ñ1 and ñ2, where n1+n2 = ñ1+ñ2 =
n. Such diagrams contain only multi-particle cuts in the ‘t-channel’.
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agators in the loop. These diagrams are 2-particle reducible in the ‘t-channel’.

We thus are led to a retrospectively obvious conclusion that Higgsplosion is a result of

taking into account all interference e↵ects between individual diagrams. These diagrams

are sketched in Fig. 1 and correspond to the sum of all possible combinations of n1, n2, ñ1

and ñ2, where n1 + n2 = ñ1 + ñ2 = n. This is to be compared with the diagrams depicted

in Fig. 2, where the cross terms between the An1 and An2 sub-amplitudes on the left and

on the right of the cut were not included. As a result, the diagrams in Fig. 2 are subleading

relative to those in Fig. 1, and do not lead to Higgsplosion.

What does lead to Higgsplosion is the correct accounting of the interference e↵ects in

the product of the two amplitudes. For reader’s convenience and for future reference we

will now also present a more technical rendering of the above n!-counting argument for

Higgsplosion from intereference, based on the technique of generating n-point amplitudes

from classical solutions. (Readers already familiar with this argument can directly skip to

the next section 2.2.2.)

A more technical argument: Ah⇤!n⇥h from classical solutions

At tree-level, all n-point scattering amplitudes for an o↵-shell field h
⇤ to produce n Higgs

particles,

h
⇤ ! n⇥ h , (2.10)

can be obtained from solving the Euler-Lagrange equations and following the generating

functions formalism of Brown [2]. For simplicity, as in Ref. [1], we will assume a simplified
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dominant contributions:

no Landau poles and the Higgs self-coupling cannot not become negative and hence

the electroweak vacuum is stable.

6. Finally it is also easy to check [1] using the same method that the real part of the self-

energy is also UV-finite and that even the finite fine-tuning of the quantum corrections

to Higgs mass parameter from integrating out a very heavy X state, MX � E⇤, is

reduced by many orders of magnitude from �M
2
h ⇠ M

2
X to �M

2
h ⇠ E

4
⇤/M

2
X . This

solves the Hierarchy problem.

2.2 Higgsplosion of the self-energy

The Higgsplosion e↵ect becomes operative when the imaginary part of the self-energy

⌃X(p2) for a given field theoretical degree of freedom X becomes exponentially large, i.e.

when the external momentum p approaches the critical energy scale E⇤ of Higgsplosion.

Specifically,

Im⌃X(p2) ⇠ RX , where

(
RX ⌧ 1 : for p2 < E

2
⇤

RX � 1 : for p2 & E
2
⇤ .

(2.8)

The value of the Higgsplosion scale E⇤ for X in general depends on the nature and strength

of interactions between X and the Higgs bosons.

To study the implications and extend of Higgsplosion, we will now consider di↵erent

choices for X, first by taking it to be the Higgs boson itself; second another light degree

of freedom (for example the top quark (spin-1/2), a vector boson (spin-1) or a graviton

(spin-2)); and finally a heavy degree of freedom with the mass much greater than the

electro-weak scale and unstable to decay into multiple Higgses.

2.2.1 Higgsplosion in the self-energy of the Higgs

We first take X to be the Higgs field itself and recall the rational for the Higgsplosion of

Im⌃h(p2) at p
2 = E

2
⇤ . The main point we want to emphasise here is that the dominant

contribution to the higgsploding self-energy, or equivalently, the multi-particle decay rate

�n, comes from summing over the interference terms between di↵erent diagrammatic con-

tributions to the amplitudes. In particular, each amplitude with n Higgs bosons in the final

state contains of the order of n! terms. The decay rate or the imaginary part of ⌃ arises

from squaring the amplitude, then dividing by the symmetry factor of n! and integrating

over the phase space. This implies that there are ⇠ n! ⇥ n! ⇥ 1
n! terms. This results in

�n ⇠ n!. Clearly, this factorial growth of the rate is entirely due to the interference terms

(i.e. all the cross terms) in the product of two amplitudes. If, on the other hand, one

would decide to neglect all the cross terms in the product of two amplitudes, each of which

contains n! terms, An ⇠ n!, one would get the total of only a single factor of n! which is

then cancelled by the 1/n! symmetry factor. In other words, schematically we have,

Im⌃n ⇠ 1

n!
(An)

2 ⇠
(

1
n! ⇥ n!⇥ n! ⇠ n! : all terms included
1
n! ⇥ n! ⇠ 1 : no interference terms .

(2.9)
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subleading contributions:
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which is essentially a single perturbation in terms of the self-energy.

This derivation, however, breaks down completely when the Im⌃(s) explodes rather than
falls o↵ at s ! 1, which is precisely the case of interest for our consideration. In this case the
contour in (4.11) cannot be closed up at infinity and the dispersion relation (4.11) is invalid. We
thus conclude that the formal justification of the perturbative Källén-Lehmann representation
for the propagator in (4.7) or equivalently (4.9) is meaningful only for a su�ciently well-behaved
imaginary part of the self-energy expression at large s. this sentence needs refining: When, on
the other hand, decay rates do not tend to vanish at infinity, one cannot use the dispersion
relation to restore the real part from the imaginary part of the self-energy by closing up the
contour, and the Källén-Lehmann representation in the form (4.7), (4.9) simply becomes invalid.
Hence the growing multi-particle decay rates do not necessarily imply the breakdown of unitarity
of the theory. In the previous sub-section we have already argued that the relevant physical
cross-sections in this case do not blow up and hence do not destroy unitarity either.

5 Higgsplosion of heavy states below their mass-threshold

To outline the Higgsplosion approach as a solution to the Hierarchy problem in the Standard
Model, let us consider a contribution of a hypothetical heavy scalar X of mass MX to the Higgs
boson mass parameter. We focus on the Lagrangian,

LX =
1

2
@µX @µX �

1

2
m2

X X2
�

�P

4
X2h2 . (5.1)

where h is the Higgs boson. We need to specify here more what the properties of X are.
X appears here stable and decays like X ! hh are not possible, but rather processes like
X⇤

! Xhh. Just to specify the broad realm of applicability we should be very explicit.
Calculating the contribution to the Higgs boson mass from the scalar X, we find
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falls o↵ at s ! 1, which is precisely the case of interest for our consideration. In this case the
contour in (4.11) cannot be closed up at infinity and the dispersion relation (4.11) is invalid. We
thus conclude that the formal justification of the perturbative Källén-Lehmann representation
for the propagator in (4.7) or equivalently (4.9) is meaningful only for a su�ciently well-behaved
imaginary part of the self-energy expression at large s. this sentence needs refining: When, on
the other hand, decay rates do not tend to vanish at infinity, one cannot use the dispersion
relation to restore the real part from the imaginary part of the self-energy by closing up the
contour, and the Källén-Lehmann representation in the form (4.7), (4.9) simply becomes invalid.
Hence the growing multi-particle decay rates do not necessarily imply the breakdown of unitarity
of the theory. In the previous sub-section we have already argued that the relevant physical
cross-sections in this case do not blow up and hence do not destroy unitarity either.
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For �(s?) ' MX at s? ⌧ M2
X =) �M2
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X . (5.3)

The reasoning above equally applies to any heavy modes, as far as they have a non-vanishing
interaction with the Higgs. These modes could be the heavy 1012 GeV sterile neutrinos which
are important for the standard thermal Leptogenesis [26, 27, 28], a heavy inflaton [29, 30], GUT-
scale particles [31, 32], flavons [33, 34], or the heavy degrees of freedom that would appear at
the fa ' 1011 GeV scale relevant for the axion [35, 36, 37, 38].

At one-loop level, one can always estimate the contributions to the Higgs mass from the
heavy states of any spin with generic interactions with the Higgs boson using the Coleman-
Weinberg e↵ective potential,

M2
h =
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@h2
, (5.4)

where

Ve↵ =
1
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Z p
s?

d4p STr log
�
p2 +MX(h)2

�
. (5.5)

STr = Tr(�1)F is the supertrace and MX(h) denotes the Higgs-field-dependent contribution to
the heavy field mass in the h(x) background. The main point, as above, is that the integral
over the loop momenta is cut-o↵ at the relatively low scale

p
s? where the Higgsplosion of the

heavy states takes place.
It is remarkable that the Hierarchy problem introduced into the Standard Model by the

existence of a microscopic light Higgs boson is addressed in this approach by Higgsploding the
heavy states into the original light Higgs bosons. The underlying cause of the apparent problem
provides its own solution.

6 Conclusions

The discovery of the Higgs boson, roughly 50 years after its prediction, marked one of the great-
est successes of the SM. While its interactions with all other particles ensures the restoration
of perturbative unitarity in 2 ! 2 scattering processes, it was long argued that the presence
of a scalar particle in the theory could lead to unitarity violation in multi-Higgs production
processes already at energies of O(100) TeV. Further, the Higgs boson, as an elementary scalar
particle, su↵ers from the well-known Hierarchy problem. We have reexamined and connected
both issues, thereby providing a simultaneous solution to both questions: We introduced the
Higgsplosion mechanism, arguing that the rapid increase of the decay rate of very heavy or
highly energetic particles is a physical e↵ect, but that this e↵ect leads to Higgspersion, i.e.
it restores perturbative unitarity in multi-Higgs boson production processes. While the cross
section of mutli-Higgs production processes can still reach observable levels, its exponential
growth is avoided and the SM retains self-consistency to highest energies. Quantum corrections
of heavy particles to the Higgs boson’s mass are driving the Hierarchy problem. If however, the
heavy particle’s width increases rapidly beyond a certain energy threshold, these contributions
are tamed and the Hierarchy problem can be avoided.
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Hence, the contribution to the Higgs mass amounts to

and thus mends the Hierarchy problem by
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If Higgsplosion is not a mathematical artefact but realised in nature:
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h*-> nh elementary scalars in a spontaneously broken QFTHiggsplosion

Why not observed somewhere 
else before?

• Gauge fields (gauge symmetry)
Higgs lacks symmetry to prevent Higgsplosion:

• Fermions (Pauli principle)

Integrable systems in 1+1 and 2+1 dim:

Might need spontaneously broken scalar QFT in at least 3+1 dim

see [Parke, Taylor ’86 ]
zero at threshold 

Quantum Mechanics:
• Energy levels not equidistantly spaced

• Scalar loop integrals near mass 
threshold IR divergent

[Khoze, MS ’17]
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Consequences of Higgsplosion
[Khoze, MS ’17]

• SM has new physical scale
(close analogy to Sphaleron)

Now, assuming that the coe�cient in front of the logarithmic term in " in (2.46) is

positive, i.e. 0 < p < 2/3, the exponent is negative at small ñ, positive at large ñ and

crosses zero at some value ñ⇤. For example, for p = 1/2 and a = 1, which corresponds to

the NLO correction � a " ñ p = � "
p
ñ, the value of ñ⇤ ' 5.55.

In the alternative scenario, where the coe�cient in front of the logarithm is negative,

for example at p = 1, the function in the exponent of (2.46) has a more complicated

behaviour with a local minimum at intermediate values of ñ. Nevertheless at larger ñ, the

function is again monotonic and crosses over from negative to positive values at ñ⇤ ' 7.2.

It then follows that the value of Ẽ⇤ = (1 + "?)n⇤ ' ñ⇤ := C = const. As a result,

we can write the Higgsplosion scale E⇤ as,

E⇤ = C
mh

�
. (2.48)

It is also easy to verify that this conclusion is consistent within the validity of the non-

relativistic limit.

The parametric dependence of the Higgsplosion energy E⇤ on the particle mass and

the inverse coupling constant is reminiscent of another famous dynamically induced scale

in the electroweak theory – the mass of the sphaleron solution [3, 4], Msph = const mW
↵w

.

Both scales are non-perturbative and semi-classical in nature. They do not appear in the

Lagrangian of the theory, but rather characterise the energy scale where the transition to

novel dynamics involving multi-particle states occurs.4 The sphaleron, however, does not

occur in the pure scalar sector of the theory and requires the SU(2) gauge theory in the

Higgs phase.

3 Systematics of loops with Higgsplosion

3.1 Computing a loop with the propagator in the classical background

We will start by considering the scalar field theory (2.1) with unbroken Z2 symmetry, and

postpone the discussion of the broken theory (2.2) to Section 3.3. As we have already

explained, the generating functional for all tree-level amplitudes on n-particle thresholds

is given in this model by the classical solution (2.26).

The aim of this section is to compute the leading-order quantum corrections to these

amplitudes in the case where a non-trivial finite Higgsplosion scale E⇤ is present. The

leading order calculation (in the absence of Higgsplosion) was performed in [9], extended

to the spontaneously broken theory in [10], and generalised in [8] to include all higher-loop

e↵ects by exponentiation to the leading order in �n.

We begin by following closely the original leading-loop calculation of Voloshin in [9],

and then explain how it should be modified to reflect the appearance of the Higgsplosion

4In the case of sphalerons, the new dynamics is that of the non-perturbative (B+L)-violating transitions

between multi-particle initial and final states.
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ñ, the value of ñ⇤ ' 5.55.
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�(x) := h0|T (�(x)�(0))|0i ⇠

8
>><

>>:

m2 e�m|x| : for |x| � 1/m

1/|x|2 : for 1/E⇤ ⌧ |x| ⌧ 1/m

E2
⇤ : for |x| . 1/E⇤

, (1.1)

where for |x| . 1/E⇤ one enters the Higgsplosion regime.

In the simplest settings described by a quantum field theory of a massive scalar field

� with mass m and coupling �, we show in Section 2 how Eq. 1.1 is linked to the growing

multi-particle decay rates. Furthermore, we show that the Higgsplosion energy scale is set

by E⇤ = C m
� , where C is a model-dependent constant of O(100). This expression holds

in the weak-coupling limit � ! 0. In this respect, it resembles the SU(2) sphaleron, which

has a mass scale of Msph = const mW
↵w

[3, 4]. However, while the sphaleron is a phenomenon

of the non-Abelian gauge-Higgs sector of the Standard Model, Higgsplosion arises due to

its scalar sector only.

The fundamental ingredient for the theory is the value of the Higgsplosion scale E⇤. It

is the scale where the rate for the process 1⇤ ! n⇥h grows exponentially for large enough n.

The factorial growth of the rate has been calculated before at leading order [5–8], one-loop

resummed [8–11], or using a semiclassical approach [12–14]. However, Higgsplosion itself

has not been taken into account in those calculations. Thus, in Section 3, we extend their

approach by including Higgsplosion, and, for the first time, calculate the loop-corrected

rates in a self-consistent way.

After the Higgsplosion scale E⇤ is established we can evaluate its phenomenological

impact on precision observables, such as gg ! h(⇤), h ! ��, h ! Z�, B ! Xs� or

g � 2. We calculate these precision observables explicitly in Section 4, and conclude with

a discussion of our findings in Section 5.
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2.1 The Dyson propagator
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the propagator (1.1), and that Higgsplosion manifests itself in resolving the short-distance
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⇤ , where E⇤ is the characteristic (high-)energy scale of Higgsplosion.

To explain what we mean by this and how the e↵ect of Higgsplosion modifies the familiar
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0 �
2 � �
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�4 , (2.1)
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8
>><

>>:
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, (1.1)

where for |x| . 1/E⇤ one enters the Higgsplosion regime.

In the simplest settings described by a quantum field theory of a massive scalar field

� with mass m and coupling �, we show in Section 2 how Eq. 1.1 is linked to the growing

multi-particle decay rates. Furthermore, we show that the Higgsplosion energy scale is set

by E⇤ = C m
� , where C is a model-dependent constant of O(100). This expression holds

in the weak-coupling limit � ! 0. In this respect, it resembles the SU(2) sphaleron, which

has a mass scale of Msph = const mW
↵w

[3, 4]. However, while the sphaleron is a phenomenon

of the non-Abelian gauge-Higgs sector of the Standard Model, Higgsplosion arises due to

its scalar sector only.

The fundamental ingredient for the theory is the value of the Higgsplosion scale E⇤. It

is the scale where the rate for the process 1⇤ ! n⇥h grows exponentially for large enough n.

The factorial growth of the rate has been calculated before at leading order [5–8], one-loop

resummed [8–11], or using a semiclassical approach [12–14]. However, Higgsplosion itself

has not been taken into account in those calculations. Thus, in Section 3, we extend their

approach by including Higgsplosion, and, for the first time, calculate the loop-corrected

rates in a self-consistent way.

After the Higgsplosion scale E⇤ is established we can evaluate its phenomenological

impact on precision observables, such as gg ! h(⇤), h ! ��, h ! Z�, B ! Xs� or

g � 2. We calculate these precision observables explicitly in Section 4, and conclude with

a discussion of our findings in Section 5.

2 The propagator and Higgsplosion basics

2.1 The Dyson propagator

In the introduction we pointed out that the central object in a theory with Higgsplosion is

the propagator (1.1), and that Higgsplosion manifests itself in resolving the short-distance

singularity at x2  1/E2
⇤ , where E⇤ is the characteristic (high-)energy scale of Higgsplosion.

To explain what we mean by this and how the e↵ect of Higgsplosion modifies the familiar

structure of the propagator, it is worthwhile first to summarise the basic elements and the

interplay between the propagator for a massive scalar field �, its self-energy ⌃(p2), and the

partial width �n(p2). This is the aim of this section.

Our technical discussion in this and the following section will be for a quantum field

theory of a single massive scalar degree of freedom. The specific models we consider are

the �4 theory with the unbroken Z2 symmetry,

L =
1

2
@µ�@µ� � 1

2
m2

0 �
2 � �

4
�4 , (2.1)

– 2 –

for one enters the Higgsplosion regime 

Scaling behaviour of propagator: 

Effect calculable on the lattice? 

Genova                  Seminar      Michael Spannowsky             28.11.2018                    27



t(p) t(p)

p p

h(p) h(p)

n n

n n

1

2

1

2

Rn
Rn
1

Rn
1

t(p) t(p)

p p

t(p) t(p)

n n

n n

1

2

1

2

~

~

Figure 3: Contributions to ⌃t(p2) from mutually independent dressed propagators in the loop.
These sub-processes do not contribute to Higgsplosion and correspond to 2-particle reducible dia-
grams in the ‘t-channel’. On the right, dominant contributions to the self-energy of the top quark
come from the interference terms between the sub-amplitudes. Such diagrams contain only multi-
particle cuts in the ‘t-channel’.

interacts with the Higgs sector. Does the imaginary part of ⌃X(p2) become large and

higgsplodes at some high critical energy scale E⇤?
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Figure 4: Not much di↵erence pictorially between emitting multiple Higgses from the top or from
the Higgs internal line

For concreteness we first consider here the case of the top quark, X = t, but the same

qualitative conclusion can immediately be drawn for all Standard Model particle (such as

the electro-weak vector bosons, gluons and fermions) as well as other not-too-heavy BSM

degrees of freedom coupled to the Higgs.

Higgsplosion in the self-energy of the top

For the case of the t quark we concentrate on its self-energy ⌃t(p2) and consider

the Yukawa interactions, yt t̄th as well as the Higgs self-interactions. A priory it may be

tempting to organise perturbative contributions to ⌃t(p2) in terms of a loop assembled two

or more mutually independent dressed propagators of the Higgs field and of the top quark,

– 10 –

Consequences of Higgsplosion

• All particles Higgsplode if virtual enough

e.q. top quark Higgsplodes

• As all virtual particles Higgsplode, all virtual corrections are regulated

depend on the RG scale µ are then obtained in the standard way from computing the

n-point one-particle irreducible LSZ-amputated Green functions Gn. These computations

are performed order by order in the loop expansion, with the only di↵erence from the usual

approach that one is required to use the dressed propagators (2.6) on all internal lines. The

leading order one-loop contributions to the 3-point and the n-point vertices are shown in

Fig. 5.

... ...
Figure 5: One loop contributions to the three-point (left) and n-point (right) Green functions.
The grey blobs represent dressed propagators and the black dots are the microscopic 3- and 4-point
interaction vertices.

This way of computing quantum e↵ects in a Higgsploding QFT leads to a powerful

conclusion that all momenta of virtual particles propagating in the loops are e↵ectively

cut o↵ at the Higgsplosion scale E⇤. Integrations over the loop momenta are convergent,

all the contributions to the n-point functions are UV finite and quantum fluctuations are

damped above E⇤.

There is an interesting parallel between this approach and Polchinski’s implementation

of the Wilson approach to renormalization [19, 20] presented in Ref. [21] for a massive �
4

theory. In the construction of [21] the UV cut-o↵ is implemented by multiplying the

propagators by a formfactor K(p2/⇤2
0) which is equal to 1 for momenta p

2  ⇤2
0 and

rapidly vanishes for p2 > ⇤2
0. What defines the theory with the (large) UV cut o↵ ⇤0 is the

Lagrangian with the modified propagator and bare vertices. When the cut o↵ is lowered

from ⇤0 to ⇤R, one is required to integrate out the high momentum components of the

field. This is implemented by changing the formfactor in the propagator to K(p2/⇤2
R) and

integrating out the modes with p
2
> ⇤2

R. This generates new e↵ective interactions and

expresses them in terms of the couplings at the scale ⇤R. The analogy of our method

for computing the n-point functions with the approach of [21] is that the theory with a

large UV cut o↵ is defined by the modified propagators and bare vertices. The momentum

modes above the cut-o↵ are switched o↵ in both cases simply by the fact that the modified

propagators vanish. In the case of Higgsplosion, what we referred to as the large UV cut

o↵ is the dynamically generated Higgsplosion scale E⇤, and the original propagators are

modified by the self-energy ⌃(p2) contributions (2.3). The theory with momenta above the

Higgsplosion scale is the theory above the UV cut-o↵; its propagators vanish so it has has

no propagating degrees of freedom left, but its vertices are the usual bare vertices fixed at

the scale E⇤. There are no quantum fluctuations and no running above the scale E⇤.

– 19 –

In full analogy to [Polchinski ’84]

[Khoze, MS ’17]
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• As all loop-diagrams are regulated, i.e. quantum fluctuations are exponentially 
suppressed, the Standard Model develops an asymptotic fix point. 

• SM is embedded into asymptotically safe theory

Classical/Deterministic theory 

From high scale, quantum fluctuations are 
emergent phenomenon

Allows to combine QFT and Gravity 

Consequences of Higgsplosion

Graviton Higgsplodes as well, as do all quantum corrections
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Figure 7: Two-loop running of standard model couplings with Higgsplosion (solid lines) and
without (dashed lines). We assumed the Higgsplosion scale to be uniformly at E⇤ = 105 GeV.

the UV. The couplings can have quantitatively di↵erent scales µ for �(gi) = 0, depending

on the masses, couplings and stability of the degrees of freedom that drive their running.

For simplicity we chose E⇤ = 105 GeV for all couplings.

The whole SM exhibits a fix point with a finite-dimensional critical surface, as required

for an asymptotically safe theory. Further, neither are there UV Landau poles associated

with any of the gauge groups, Yukawa couplings or scalar interactions. In particular, if the

Higgsplosion scale for all particles is below ⇠ 106 GeV, the Higgs potential remains stable

on cosmological time scales.

While embedding the standard model into an asymptotically safe theory, i.e. a theory

free of Landau poles and free of a hierarchy problem due to Higgs-gravity interactions,

has been a challenge [47–49], within the Higgsplosion framework, following arguments of

Sec. 2, this is automatically realised for the minimal standard model and for most of its

proposed extensions. In the standard model without Higgsplosion one expects gravity to

give rise to a fine-tuning problem when �M
2
h & M

2
h , where �M

2
h ⇠ lGN⇤4

G with l ⇠ (4⇡)�4,

i.e. around the scale ⇤G ' 1011 GeV. However, with the graviton Higgsplosion scale E
G
⇤

being much smaller than ⇤G, as calculated in Sec. 2.2.2, the gravitational contributions to

the fine-tuning of the Higgs mass is cut o↵ at �M
2
h ⇠ lGN (EG

⇤ )
4 ⌧ M

2
h . Hence, in the

Higgsplosion scenario, there is no introduction of a hierarchy problem due to gravity and

the need to construct a scenario that softens gravity in the UV is absent.

3.2 Higgsplosion during inflation

In the standard Big Bang cosmology inflation was proposed to solve simultaneously the

flatness, isotropy, homogenity, horizon and relics problems [28–31]. Thus inflation is the

most popular theory of the early universe, in full agreement with observations, including

the recent data from Planck satellite [50], which favour a simple inflationary scenario with

– 22 –

Running of couplings in presence of Higgsplosion

Higgs self-coupling doesnt turn negative

Electroweak potential remains stable

No Landau poles for U(1) and Yukawas

Consequences of Higgsplosion
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• High-energy scatterings are significantly modified, i.e. virtual s-channel 
particles are Higgspersed

...

Figure 6: s-channel (left) and t-channel (right) interaction diagrams.

3 Phenomenology and the early Universe with Higgsplosion

Many parts of models of the early Universe are relying on finite temperature e↵ects and

quantum fluctuations, all of which could receive corrections from the Higgsplosion mecha-

nism, e.g. inflation [28–31], reheating [32], the cosmological microwave background [33, 34],

blackhole formation [35–37] and the vacuum energy density during the evolution of the Uni-

verse [38]. As these phenoma are not entirely independent and are deserving of a detailed

investigation in their own right, a full study of the early history of the Universe in pres-

ence of Higgsplosion is beyond the scope of this work. However, in this section we briefly

comment on whether and how radically Higgsplosion would change the standard Big Bang

model of the early Universe.

3.1 Higgsplosion and the running of gauge and gravity couplings

General relativity is inherently di�cult to reconcile with the quantum field theoretical

description of the standard model. While the quantum theory of the standard model is

predictive to all orders in perturbation theory, loop corrections to gravity can only be taken

into account order by order and have to be treated in the context of an e↵ective field theory

with expansion parameter E2
/M

2
Pl. One way of addressing this problem is the concept of

asymptotic safety [39–44] which ensures that quantum field theories remain fundamental

and predictive up to highest energies. This scenario indicates that a quantum theory

of gravity can be renormalisable on a non-perturbative level, despite being perturbatively

non-renormalisable. In gravity asymptotic safety aims to provide a path-integral framework

where the metric field is the carrier of the fundamental degrees of freedom in the classical

and quantum regime of the theory. Thus, the quantum field theoretical description of

gravity can be extended to infinitely large energy scales. A realisation of asymptotic safety

requires that the beta-functions of all couplings gi vanish at fix points g
⇤
i , i.e. �(g⇤i ) = 0.

The number of parameters gi defines the dimensionality of the ultraviolet critical surface

formed by all trajectories attracted to the fixed point.

In Fig. 7 we show the impact of Higgsplosion on the running of the Yukawa, scalar,

gauge and gravity couplings. For the standard model couplings we use 2-loop running as

implemented in SARAH [45, 46], while for gravity we show the classical value normalised to

(MPl/2)2, as we do not want to speculate about the theory that governs quantum gravity in

– 21 –

theory with 
‘minimal-length’

Consequences of Higgsplosion

At high energies 
only ladder diagrams 

important

In analogy to 
Reggeon picture

dynamical 
mechanism for 
classicalization

To probe smaller and 
smaller structure the 

photon needs to be more 
and more virtual  

Higgsplosion sets cut-off

example DIS
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Questions on implications:

Is Inflation excluded/affected by Higgsplosion?

Not necessarily… for example singlet field S non-minimally coupled to gravity

only one slow rolling scalar field.

While an exhaustive discussion of inflation is beyond the scope of this article, we want

to investigate if Higgsplosion can be reconciled with inflation or if one or the other has to be

abandoned. We thus focus on a scenario with a non-minimally coupled scalar singlet field

S to gravity [51] (see also [52–55]) as an example to show that Inflation can be incorporated

into the Higgsplosion framework. A non-minimal inflaton coupling to gravity allows for a

tensor-scalar ratio of r0.05 & �0.004 well in agreement with current limits of r0.05 < 0.07

[56]. We take the relevant Jordan frame Lagrangian to be

L =
p
�g


�MP l + ⇠sS

2

2
R+ @µH

†
@
µ
H + (@µS)

2 � V (H,S)

�
(3.1)

with the Higgs doublet H = (�+
, 1/

p
2(h + i�

0))T . The inflaton’s non-minimal coupling

term to gravity ⇠sS
2
R/2 should have a large parameter ⇠s ⇠ 104. The tree-level two-field

scalar potential is

V (H,S) = �µhH
†
H + �h(H

†
H)2 � 1

2
µ
2
SS

2 +
1

4
�SS

4 +
1

2
�ShH

†
HS

2
. (3.2)

To bound the potential from below we take all �i to be positive.

The inflaton develops a vacuum expectation value vs during inflation. Thus, during

inflation, the mass of both the inflaton and the Higgs boson in the inflaton background are

large

Mh '
r

�Sh

2
S(x) ' MP lp

⇠s
. (3.3)

As h is of the order of the mass of the inflation S, or even heavier, the inflaton can-

not higgsplode during inflation. Phenomenologically, inflation within the singlet extended

Standard Model can remain una↵ected by Higgsplosion.

The picture can change during reheating, where the inflaton oscillates around the

potential’s minimum, and with it the Higgs mass varies. One could imagine that reheating

becomes more e�cient if Higgsplosion sets in and that the mechanism is di↵erent from

standard resonant reheating, which is associated with growing classical instabilities. A

detailed study of reheating seems warranted but is beyond the scope of this work.

3.3 Axions

The strong CP problem, the discrepancy between the theoretically allowed value of the

sum of the QCD topological angle and the quark mass phase ✓ = ✓0 + arg detMq and its

experimentally observed size of less than O(10�10), provides a motivation to augment the

SM by an additional pseudo-nambu-goldstone boson a of a spontaneously broken U(1)PQ

symmetry [57–63]. The axion’s Lagrangian below the Peccei Quinn (PQ) breaking scale

can be written as

La =
1

2
(@µa)

2 +
a

fa

↵s

8⇡
Gµ⌫G̃

µ⌫ +
a

4
g
0
a��Fµ⌫F̃

µ⌫ +
@µa

2fa
gq q̄�

µ
�5q (3.4)

where the axion decay constant fa is the order parameter associated with the breaking

of U(1)PQ via a(x) ! a(x) + ↵fa and the dual gluon field strength G̃µ⌫ = 1
2✏µ⌫⇢�G

⇢�

(analogously for F̃µ⌫).
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Take Lagrangian in Jordan frame

the scalar potential is

only one slow rolling scalar field.
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During Inflation Higgs mass in Inflaton background large

No phase space for S to Higgsplode

Picture changes fundamentally during reheating

[Khoze, MS ’17]
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Questions on implications:

Is the existence of Axions (light scalars) irreconcilable with Higgsplosion?

QCD-Axion provides predictive framework to address this question

In the context of Higgsplosion, the QCD-axion provides a well-defined framework to

answer the question if light degrees of freedom are allowed, or if they would lower the

Higgsplosion scale enough to render this mechanism incompatible with the existence of

very light and weakly coupled scalars. The only free parameter that is defining the axion’s

interactions and mass is fa. At next-to-leading order4 the axion mass and self interaction

are respectively calculated to be [64]

ma ' 5.7 · 1015eV
fa

(3.5)

and

�a ⌘ @
4
V (a)

@a4

����
a=0

' �0.346
m

2
a

f2
a
. (3.6)

We can now estimate the Higgsplosion scale where ↵s stops running due to axion

contributions in the Higgsplosion of the gluon. A crude approximation, assuming �ana & 20

results in Higgsplosion, gives a Higgsplosion scale E⇤ of

E
Axion
⇤ ' 60

f
2
a

ma
. (3.7)

If we require the Axion’s Higgsplosion5 scale to be above the Higgs boson’s Higgsplosion

scale, i.e. E
Axion
⇤ > 105 GeV, we find a limit fa & 2.1 GeV, which is easily achievable.

Such a bound is far below existing experimental limits of fa & 108 � 1017 GeV [65–68].

Thus, the existence of QCD axions is not in conflict with Higgsplosion and the axion’s

contribution to the Higgsplosion of SM light degrees of freedom is negligible for su�ciently

large fa.

4 Discussion and Conclusions

The discovery of the Higgs boson has unravelled an extraordinary building block in our

understanding of elementary particle physics: the first elementary scalar particle. An im-

mense e↵ort is being devoted to determining its precise properties and in using it as a

vehicle to uncover answers to thus far inexplicable observations in nature. Yet, the Higgs

boson’s hierarchy problem and its peculiar contribution to h⇤ ! n⇥h transition amplitudes

have been puzzling for a long time and have provided motivation to extend the standard

model of particle physics by novel degrees of freedom and interactions. In [1] we have

proposed two intertwined mechanisms, Higgsplosion and Higgspersion, to address both of

these issues. In this paper work we have extended the discussion and interpretation of Hig-
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testable, consequences in case these mechanisms are realised in nature.
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To avoid confusion we will refrain from calling the rapid increase of the transition amplitude in the
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Modification in loop corrections:
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Figure 4: Plot of the e↵ect of Higgsplosion on the partonic cross section for gg ! h (left) and the

partial decay width for h ! �� and h ! Z� (right) as functions of the Higgsplosion scale E⇤.

decay modes. For the production mode, the dominant contribution comes from the top-

quark loop, and we neglect the contribution from the lighter fermions. For the decay

modes, there are also contributions from W -boson loops which interfere destructively with

the top-quark loop.

In all three processes the external momentum scale is set by the Higgs mass,
p
ŝ ' mh.

This is the only external momentum scale that enters into the loop integrals for these

processes, which can be decomposed into C0 triangle integrals. To quantify the relative

change due to Higgsplosion, we define the quantities �̂⇤ and �⇤ for the partonic cross

section and decay width respectively, where the loop integrals have been calculated using

the Higgsplosion expressions. These are then compared to their associated SM results, and

their relative di↵erences calculated. In Figure 4, we plot the e↵ect of Higgsplosion on the

Higgs observables as functions of the Higgsplosion scale, E⇤.

Current theoretical uncertainties on gg ! h are O(10)%, irrespective of the center-of-

mass energy of the hard process [24]. Here, a large improvement would be needed to become

sensitive to the Higgsplosion scenario. Even if such improvements could be achieved, the

predicted experimental sensitivity is O(5)% at the LHC with 3000 fb�1 [25]. A higher

precision can be achieved for the decay h ! gg at a future electron-positron collider.

Ref. [26] gives a predicted precision for BR(h ! gg) of 1.4% for the FCCee and 3.3% for

a 250 GeV ILC.

The expected precision for BR(h ! ��) is 3.0% at the FCCee. The rate for BR(h !
Z�) is too small to set tight limits at electron-positron colliders. At the HL-LHC the rate

can be limited to O(10)% accuracy [27]. Hence, even assuming strong improvements on the

theory uncertainties and data from a future circular electron-positron collider it will not be

possible to set limits on the Higgsplosion scale in such measurements of a singly-produced

on-shell Higgs boson.

A larger e↵ect can be achieved by increasing the interaction scale
p
ŝ. In Fig. 5 we

show the impact of Higgsplosion on the process gg ! h⇤, when varying
p
ŝ between 10�90
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Figure 5: Plot of the e↵ect of Higgsplosion on the partonic cross section for gg ! h⇤
as a function

of the centre-of-mass energy
p
ŝ. The di↵erent curves show di↵erent values of the Higgsplosion scale

E⇤.

TeV. This amounts to producing a Higgs boson far away from its mass-shell or a heavy

Higgs boson that could arise in an extension of the Standard Model. The e↵ect becomes

O(1) when
p
ŝ ' 2E⇤, in close analogy to the 2mt threshold of the gg ! h process in the

Standard Model. The three curves in Fig. 5 correspond to di↵erent Higgsplosion scales. As

corrections from Higgsplosion scale like ŝ/E2
⇤ , the higher the Higgsplosion scale, the largep

ŝ has to be to achieve an observable e↵ect. This motivates precision studies at a future

high-energy collider to test the realisation of Higgsplosion in nature.

4.5 Flavor observables

As Higgsplosion has a direct e↵ect on all loop-induced processes and virtual corrections,

flavor observables that have been measured rather precisely could be used to set a limit on

the Higgsplosion scale E⇤. Relevant observables include rare or semileptonic meson decays

and Kaon or B-meson mixing parameters [28].

The rate of the rare inclusive decay process B ! Xs� is one of the most important

B-physics observables as it sets stringent constraints on the parameter space of various

extensions of the SM [29]. At lowest order it can be described by the transition b ! s�.

The e↵ective Hamiltonian for this decay is usually expressed as [30]

He↵ = �4GFp
2
VtbV

⇤
ts

8X

i=1

Ci(µ)Oi(µ) , (4.16)

where Vij are elements of the CKM matrix, GF is the Fermi constant and µ is the scale at

which the Wilson coe�cients Ci(µ) are evaluated at.

The e↵ect of Higgsplosion is predominantly encoded in the Wilson coe�cients. Their

relative change from the SM directly modifies the decay rate of B ! Xs� by the same

amount. Here, we will focus on the coe�cients C7 and C8, which are associated with the
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partial decay width for h ! �� and h ! Z� (right) as functions of the Higgsplosion scale E⇤.
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modes, there are also contributions from W -boson loops which interfere destructively with

the top-quark loop.
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This is the only external momentum scale that enters into the loop integrals for these

processes, which can be decomposed into C0 triangle integrals. To quantify the relative

change due to Higgsplosion, we define the quantities �̂⇤ and �⇤ for the partonic cross

section and decay width respectively, where the loop integrals have been calculated using

the Higgsplosion expressions. These are then compared to their associated SM results, and

their relative di↵erences calculated. In Figure 4, we plot the e↵ect of Higgsplosion on the

Higgs observables as functions of the Higgsplosion scale, E⇤.

Current theoretical uncertainties on gg ! h are O(10)%, irrespective of the center-of-

mass energy of the hard process [24]. Here, a large improvement would be needed to become

sensitive to the Higgsplosion scenario. Even if such improvements could be achieved, the

predicted experimental sensitivity is O(5)% at the LHC with 3000 fb�1 [25]. A higher

precision can be achieved for the decay h ! gg at a future electron-positron collider.

Ref. [26] gives a predicted precision for BR(h ! gg) of 1.4% for the FCCee and 3.3% for

a 250 GeV ILC.

The expected precision for BR(h ! ��) is 3.0% at the FCCee. The rate for BR(h !
Z�) is too small to set tight limits at electron-positron colliders. At the HL-LHC the rate

can be limited to O(10)% accuracy [27]. Hence, even assuming strong improvements on the

theory uncertainties and data from a future circular electron-positron collider it will not be

possible to set limits on the Higgsplosion scale in such measurements of a singly-produced

on-shell Higgs boson.

A larger e↵ect can be achieved by increasing the interaction scale
p
ŝ. In Fig. 5 we

show the impact of Higgsplosion on the process gg ! h⇤, when varying
p
ŝ between 10�90
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Loop-induced Higgs decays

operators

O7 =
e

16⇡2
mb hsj |!+�µ⌫ |bii �ijFµ⌫ , (4.17)

O8 =
gs

16⇡2
mb hsj |!+�µ⌫ |biiT a

ijG
µ⌫
a . (4.18)

They are calculated from the partonic transitions b ! s� and b ! sg respectively. Fig. 6

shows the Wilson coe�cients C7 and C8 as functions of the Higgsplosion scale, E⇤.
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Figure 6: Plot of the e↵ect of Higgsplosion on the Wilson coe�cients C7 and C8 for B ! Xs� as

functions of the Higgsplosion scale E⇤.

We find that the Higgsplosion modifications of B ! Xs� compared to the SM are small

and are, even for a low Higgsplosion scale of E⇤ ' 30 TeV, unobservable, taking theoretical

and experimental uncertainties into account. Current measurements of BR(B ! Xs�) '
(335 ± 15) · 10�6 [31–33] are at the level of 5% accuracy only.

4.6 Anomalous magnetic dipole moment of the electron and muon

The anomalous magnetic dipole moment of the electron is one of the great successes of

twentieth century physics, and QED specifically. The precision with which theoretical

predictions agree with experimental measurement is about one part in a trillion, which is

unprecedented for many areas of physics. However, for a muon there is a discrepancy with

the SM prediction [34–37]

�aµ = aexpµ � atheoryµ ' 2.90 · 10�9, (4.19)

which may be a sign of new physics.

The anomalous magnetic moment of a fermion quantifies how much its magnetic mo-

ment g di↵ers from its classical value, which is predicted by the Dirac equation. This is

quantified by the expression a = (g�2)/2, where a is the anomalous magnetic moment. In

perturbative QED, the tree level result corresponds to the vertex interaction of a charged

lepton and photon at zero momentum transfer, and recovers the classical prediction. The
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Anomalous magnetic moment of the muon and electron

Problem: all corrections scale like 

radiative corrections to this vertex can in general be described by the form-factors F1 and

F2,

�µ = F1(q
2)�µ + F2(q

2)
i�µ⌫q⌫
2m

. (4.20)

The anomalous magnetic moment is then given by F2(0). We calculate the one-loop contri-

butions to the anomalous magnetic moment of the electron and muon and their deviations

due to Higgsplosion. The one-loop result for a charged lepton ` can be compactly written

as

a` =
↵

4⇡

⇥
2B0(m

2
` , 0,m

2
` ) � B0(0,m

2
` ,m

2
` ) � B0(0, 0,m

2
` ) � 1

⇤
. (4.21)

In the SM at one loop, the mass dependence in the B0 integrals cancels so the anomalous

magnetic moment is a` = ↵/(2⇡) for all charged leptons. However, in Higgsplosion the

mass dependence remains and changes are induced via the B0 integrals. The e↵ect of

Higgsplosion is shown by the plot in Fig. 7. We find that the sensitivity on aµ has to be

improved by at least two orders of magnitude to be able to set a meaningful limit on the

Higgsplosion scale E⇤.
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Figure 7: Plot of the e↵ect of Higgsplosion on the anomalous magnetic moment of the electron

and muon as functions of the Higgsplosion scale E⇤.

The anomalous magnetic moment of the electron has been measured to be [38]

aexpe = 11596521807.3(2.8) · 10�13, (4.22)

with an experimental uncertainty of �aexpe = 2.8 · 10�13. Such high precision allows one to

set limits on a wide range of new physics models [39]. However, as the relative changes to

the anomalous magnetic moments of the electron and muon induced by Higgsplosion are

related by
1 � a⇤e/a

SM
e

1 � a⇤µ/a
SM
µ

⇡ m2
e

m2
µ
, (4.23)

the increased precision for the electron compared with the muon does not translate into a

better limit on the Higgsplosion scale.
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better limit on the Higgsplosion scale.
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operators

O7 =
e

16⇡2
mb hsj |!+�µ⌫ |bii �ijFµ⌫ , (4.17)

O8 =
gs

16⇡2
mb hsj |!+�µ⌫ |biiT a

ijG
µ⌫
a . (4.18)

They are calculated from the partonic transitions b ! s� and b ! sg respectively. Fig. 6

shows the Wilson coe�cients C7 and C8 as functions of the Higgsplosion scale, E⇤.

Figure 6: Plot of the e↵ect of Higgsplosion on the Wilson coe�cients C7 and C8 for B ! Xs� as

functions of the Higgsplosion scale E⇤.

We find that the Higgsplosion modifications of B ! Xs� compared to the SM are small

and are, even for a low Higgsplosion scale of E⇤ ' 30 TeV, unobservable, taking theoretical

and experimental uncertainties into account. Current measurements of BR(B ! Xs�) '
(335 ± 15) · 10�6 [31–33] are at the level of 5% accuracy only.

4.6 Anomalous magnetic dipole moment of the electron and muon

The anomalous magnetic dipole moment of the electron is one of the great successes of

twentieth century physics, and QED specifically. The precision with which theoretical

predictions agree with experimental measurement is about one part in a trillion, which is

unprecedented for many areas of physics. However, for a muon there is a discrepancy with

the SM prediction [34–37]

�aµ = aexpµ � atheoryµ ' 2.90 · 10�9, (4.19)

which may be a sign of new physics.

The anomalous magnetic moment of a fermion quantifies how much its magnetic mo-

ment g di↵ers from its classical value, which is predicted by the Dirac equation. This is

quantified by the expression a = (g�2)/2, where a is the anomalous magnetic moment. In

perturbative QED, the tree level result corresponds to the vertex interaction of a charged

lepton and photon at zero momentum transfer, and recovers the classical prediction. The

– 27 –

Figure 5: Plot of the e↵ect of Higgsplosion on the partonic cross section for gg ! h⇤
as a function

of the centre-of-mass energy
p
ŝ. The di↵erent curves show di↵erent values of the Higgsplosion scale

E⇤.

TeV. This amounts to producing a Higgs boson far away from its mass-shell or a heavy

Higgs boson that could arise in an extension of the Standard Model. The e↵ect becomes

O(1) when
p
ŝ ' 2E⇤, in close analogy to the 2mt threshold of the gg ! h process in the

Standard Model. The three curves in Fig. 5 correspond to di↵erent Higgsplosion scales. As

corrections from Higgsplosion scale like ŝ/E2
⇤ , the higher the Higgsplosion scale, the largep

ŝ has to be to achieve an observable e↵ect. This motivates precision studies at a future

high-energy collider to test the realisation of Higgsplosion in nature.

4.5 Flavor observables

As Higgsplosion has a direct e↵ect on all loop-induced processes and virtual corrections,

flavor observables that have been measured rather precisely could be used to set a limit on

the Higgsplosion scale E⇤. Relevant observables include rare or semileptonic meson decays

and Kaon or B-meson mixing parameters [28].

The rate of the rare inclusive decay process B ! Xs� is one of the most important

B-physics observables as it sets stringent constraints on the parameter space of various

extensions of the SM [29]. At lowest order it can be described by the transition b ! s�.

The e↵ective Hamiltonian for this decay is usually expressed as [30]

He↵ = �4GFp
2
VtbV

⇤
ts

8X

i=1

Ci(µ)Oi(µ) , (4.16)

where Vij are elements of the CKM matrix, GF is the Fermi constant and µ is the scale at

which the Wilson coe�cients Ci(µ) are evaluated at.

The e↵ect of Higgsplosion is predominantly encoded in the Wilson coe�cients. Their

relative change from the SM directly modifies the decay rate of B ! Xs� by the same

amount. Here, we will focus on the coe�cients C7 and C8, which are associated with the
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radiative corrections to this vertex can in general be described by the form-factors F1 and

F2,

�µ = F1(q
2)�µ + F2(q

2)
i�µ⌫q⌫
2m

. (4.20)

The anomalous magnetic moment is then given by F2(0). We calculate the one-loop contri-

butions to the anomalous magnetic moment of the electron and muon and their deviations

due to Higgsplosion. The one-loop result for a charged lepton ` can be compactly written

as

a` =
↵

4⇡

⇥
2B0(m

2
` , 0,m

2
` ) � B0(0,m

2
` ,m

2
` ) � B0(0, 0,m

2
` ) � 1

⇤
. (4.21)

In the SM at one loop, the mass dependence in the B0 integrals cancels so the anomalous

magnetic moment is a` = ↵/(2⇡) for all charged leptons. However, in Higgsplosion the

mass dependence remains and changes are induced via the B0 integrals. The e↵ect of

Higgsplosion is shown by the plot in Fig. 7. We find that the sensitivity on aµ has to be

improved by at least two orders of magnitude to be able to set a meaningful limit on the

Higgsplosion scale E⇤.

Figure 7: Plot of the e↵ect of Higgsplosion on the anomalous magnetic moment of the electron

and muon as functions of the Higgsplosion scale E⇤.

The anomalous magnetic moment of the electron has been measured to be [38]

aexpe = 11596521807.3(2.8) · 10�13, (4.22)

with an experimental uncertainty of �aexpe = 2.8 · 10�13. Such high precision allows one to

set limits on a wide range of new physics models [39]. However, as the relative changes to

the anomalous magnetic moments of the electron and muon induced by Higgsplosion are

related by
1 � a⇤e/a

SM
e

1 � a⇤µ/a
SM
µ

⇡ m2
e

m2
µ
, (4.23)

the increased precision for the electron compared with the muon does not translate into a

better limit on the Higgsplosion scale.
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The anomalous magnetic moment of the electron has been measured to be [38]

aexpe = 11596521807.3(2.8) · 10�13, (4.22)

with an experimental uncertainty of �aexpe = 2.8 · 10�13. Such high precision allows one to

set limits on a wide range of new physics models [39]. However, as the relative changes to

the anomalous magnetic moments of the electron and muon induced by Higgsplosion are

related by
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the increased precision for the electron compared with the muon does not translate into a

better limit on the Higgsplosion scale.
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Prospects of direct observation of Higgslposion

Collider observables for Higgsplosion production

[Gainer ’17]see

If Higgsplosion is realised, the 
detector lights up like a 

Christmas tree

-> discovery with few events possible
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Prospects of direct observation of Higgsplosion

Partonic gluon-fusion cross 
section:

It was pointed out in [1] that the direct Higgsplosive production of multiple Higgs

bosons in very high energy collisions with
p
s > E⇤ does not result in the breakdown of

perturbative unitarity even when the rates appear to grow exponentially with energy. The

computation of the cross section of physical processes, such as gluon fusion gg ! n ⇥ h

going through an intermediate virtual Higgs boson(s) produced in the s-channel, gg !
h⇤ ! n ⇥ h, requires the use of the dressed propagators for the intermediate h⇤. This

results in Higgspersion, i.e. a well-behaved cross section for arbitrary n up to very high

energies [1]

��
gg!n⇥h ⇠ y2tm

2
t log

4

 
mtp
p2

!
⇥ 1

p4 +m4
hR2

⇥ Rn , (5.1)

and thus

�gg!n⇥h ⇠
(

R : for
p
s  E⇤ where R . 1

1/R ! 0 : for
p
s � E⇤ where R � 1

. (5.2)

Hence, by avoiding a breakdown of perturbative unitarity in multi-boson production, the

theory can retain consistency and predictivity to much higher, technically even unlimited,

energy scales.

It is important to keep in mind that the expression for the cross section in (5.2) does

not imply that the physical cross section once again becomes exponentially small when p2

or s is � E2
⇤ . This expression was derived under the assumption that all the energy of the

collision goes into producing as many soft quanta as kinematically possible. However, at

energies exceeding E⇤, this is no longer the case. Instead it is more advantageous for the

initial highly energetic particles to emit one or few hard quanta to lower the energy fromp
s down to ⇠ E⇤. The scattering then proceeds by emitting mostly soft quanta. Thus the

correct behaviour for the Higgsplosion cross section is that it saturates at high energies,

�gg!n⇥h ⇠
(

R : for
p
s ⌧ E⇤ where R ⌧ 1

1 : for
p
s � E⇤ where R � 1

. (5.3)

This leaves the possibility of direct Higgsplosion processes being observable at energies

above the Higgsplosion scale.
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asymptotic large energy behaviour
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there is smooth-spot for energy into hard process, or subsequent emissions of jets

maximum probability for hard process~
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adjust x in hadron collision or emit excessive energy via jets
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Prospects of direct observation of Higgslposion
Vector boson fusion at high-energy pp colliders (FCC)

…

n non-relativistic Higgses

Higgsplosion at 

Propagator with Higgspersion at 

i

s⇤ �m2
h � Re⌃̃(s⇤) + imh�(s⇤)

p
s⇤

p
s⇤

p
s⇤

p
s0

quark pdfs

quark pdfs

energy excess over       carried away by jets
p
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Figure 1: Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state
into n Higgs bosons h plotted as function of n. The four lines correspond to the energies of the
initial state equal 190Mh, 195Mh, 200Mh and 205Mh, as indicated. There is a sharp exponential
dependence of the peak rate on the energy varying from R . 10�6 at E = 190Mh (red line) to
R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.

Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [8]. These results will be reported in a forthcoming publication [19].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form

⇡ +3.02n
q

�n
4⇡ .

As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [19]

R = exp

"
�n

�

 
log

�n

4
+ 3.02

r
�n

4⇡
� 1 +

3

2

⇣
log

"

3⇡
+ 1
⌘
�

25

12
"

!#
. (3.15)

This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted

8

�n/M
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• [Khoze, Scholtz, MS in prep]

 40

• preliminary: no Higgs 
decays into SM dofs 
included;                         
& no vector bosons in 
final states yet

Vector boson fusion at high-energy pp colliders (FCC)

using pt jet > 40 GeV

see also [Gainer ’17] 



Train of thought:

h* -> n h shows factorial growth in classical, 1-loop 
resummed and semi-classical calculations
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If for any n explodes  
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7

explodes

optical theorem

(all orders) Imaginary part of self-energies explode 

Real part can’t cancel imaginary part of self-energy

All 2-point and n-point functions shut down beyond 
Higgsplosion scale

New physical scale in SM, no Unitarity violation, no 
Hierarchy problem, asymptotically safe theory, stable 
vacuum, minimal-length theory
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Summary

If Higgsplosion realised it will have spectacular 
consequences, i.e. many pieces fall into place

Experimental tests

-> build O(100) TeV collider

Theoretical tests

-> Lattice calculation

Currently, idea relies on 20th century QFT

much improved low energy 
measurements, e.g. g-2

-> -> Impro ve d sem i-
classical approach?

The SM has a new energy scale one can test
No-loose theorem for future collider
(either Higgsplosion or NP, e.g. composite Higgs)
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