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Motivations

In QFT the Stone-von Neumann theorem does not apply. This
feature has been systematically studied only recently with
functional integral methods!

This feature reveals to be central in the study of flavor mixing in
QFT, where the vacuum presents an exotic structure. Standard
functional integral methods seem to be inappropriate in dealing

with corresponding Green’s functions

A generalization of generating functional of Green’s functions has
been developed in QM?, to deal with these exotic Green’s

functions

. Blasone, P. Jizba, L. S., Ann. Phys. 383, 205 (2017)
2M.

Blasone, P. Jizba and L.S., Phys. Rev. A 96, 052107 (2017)



Canonical transformations in

classical mechanics



Hamiltonian dynamics

A classical system is described by the Hamilton equations

_ 9H({gh{p}) ;= _OH(dp})

Qj 8p]‘ ’ 9 8(]]‘

The time evolution of an observable f is given by

- of
f={rHy+ 5

The Poisson bracket is defined as

L [(of b9 Of dg
U = 3 (5~ )



Poisson bracket

Properties of Poisson bracket:

e Antisymmetry

e Bilinearity

{ficcgr+c292} = aco {fig} + c2{f, 92}, ci,c2€R

e Jacobi identity

{fv{gvh}} + {h”{f7g}} + {97{h7f}} =0



Weyl-Heisenberg algebra

Let us now consider the space M @ R of linear functions on the phase
space (including constant functions). The pair (M @ R, {, }) is a Lie
algebra: the Weyl-Heisenberg algebra wy.

{gj,pe} = 1-0jk {g,ax} = {pj,px} = 0

{g;,1}y = {pj;1} =0

are known as canonical commutation relations (CCR)



Canonical transformations

A canonical transformation is a relation

Q; = Q;({g},{r}.1), Py = P;({q},{p}.?)

which preserve the form of the Hamilton equations:

op; B 9Q;

0 -

K plays the role of the new Hamiltonian.



Canonical transformations (2)

Old and new variables are related as

N N ) )
Z])j(jj*H:ZPij*K‘FF
J=1 J=1

where F' is the generating function of the canonical transformation.

One can prove that

{Qj, Py = 1-6jx, {Q;,Qx} =0, {P,P} =0
{Q;,1} = {P;,1} =0

Canonical transformations connect different representations of wy.



Quantization



Quantization

The passage from classical to quantum mechanics is realized by taking
unitary representations of the algebra of the observables on an Hilbert
space H3:

m(f) = —iOy
where OAf is a self-adjoint operator. The Lie algebra homomorphism

property reads

m({f,9}) = [x(f), 7(9)]

Explicitly:

_ié{f,g} = = [Ofv Og]

3P. Woit, Quantum Theory, Groups and Representations (Springer, 2017)



Schrodinger representation of w;

The Schrodinger representation of w; is defined as the pair
(T, L(R)

Ls(q)(q) = —iqu(q) = —iqy(q)

Ps()w(e) = —-ipwle) = —diq«b(q)

Ts(D)w(q) = —ily(q) = —iv(q)
with (q) € L2(R).

We have

which are the Heisenberg CCR.
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Schrodinger representation of W,

Weyl-Heisenberg group Wi (Schrodinger representation) elements are:

((j) ,y) = exp (—zzi[) exp [—i (2G + yp)]

The group analog of the Heisenberg CCR is:
exp (—izg) exp (—iyp) = exp (—zy) exp (—iyp) exp (—izq)
This is the Weyl form of CCR.
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Stone—von Neumann theorem

e The Schrodinger representation of W is irreducible.
e Given a basis ey, ez, e3 of wy:

Every irreducible representation of 1}, on an Hilbert space
‘H, so that
m(es) = —il

is unitarily equivalent to the Schréodinger representation.

This is the Stone-von Neumann theorem. It can be generalized to
Wy for a finite N.

12



Canonical transformations in

quantum field theory



Inequivalent representations: fermion fields (1)

Let us consider a massless Dirac field
F % Ty A
iyt o Y =

In a finite volume V:
1 5 ik-x
(ukak + 0! k,jﬁ e (t )) e

V k,r
Wit Let us perform a

= B{('e_

e iont, L (t)

where & (t)
Bogoliubov transformation

" & (t) sin O + A1 (1) cos Ok

1) BT () B(t) =



Inequivalent representations: fermion fields (2)

k,r
where €4, = 1/2cot~([k|/m) and G4(t) = afe et
Br(t) = Bre .
Defining
up = U cosOk + € vy sin Ok (1)
vl = 07, cosO — € uy, sin Oy (2)
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Inequivalent representations: fermion fields (3)

The field can be expanded as:
(x) Z (ukak + ol kgﬁer(t)> e'x

This satisfies*:

4V.A. Miransky, Dynamical Symmetry Breaking in Quantum Field Theories,

(World Scientific, London, 1993)
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Inequivalent representations: fermion fields (4)

The respective vacua |0) and |0)
Gicl0) = Bil0) = 0 4 [0) = Fgl0) = 0

are related as

0) = Bm(0)]0)
Removing the regulator:
Jim (0F) = o

Orthogonal Fock spaces: Inequivalent representations of
anticommutation relations.
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Neutrino mixing

e Two-flavor neutrino mixing Lagrangian density:

L= 3" Do(@) ((9"0u—mo) H(x) — mep (Pe()(x) + Pu(2) e ()

o=e,u

e Mixing transformations define fields with definite mass vy, vo:

Ve(x) = cosf in(x) + sinf y(x)
v, (z) = —sinb in(z) + cosf to(x)
with 9
tan2 = ——el
me — My,

17



Mixing generator

e At finite volume, mixing relations are rewritten as

Mixing generator:

Gatt) =exp |0 [ x (o](@)ia(o) = p}(w)on ()

18



Decomposition of the mixing generator (1)

e The mixing generator can be decomposed as®:

Go = B(01,0,) R(0) B™1(01,0,)

where B(01,0) = B1(01) By(05),
R(0) = exp {0 Z [ (dﬁdi,z + BiTk,lﬁik,2> el — hfl }
k,r

Bi(©;) = exp { SO € [a;,i,é:k‘,ie—i% _ B;Tkyia;fiewk,i] } L i=1,2
k,r

and @k,i = 1/2 C0t71(|k‘/mi), 1/}1( = (wk71 — wk72)t, ¢k,1’, = 2wk,,,;t.

5M.Blasone, M.V.Gargiulo and G.Vitiello, Phys. Lett.B 761, 104 (2016)
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Decomposition of the mixing generator (2)

Bl-(Gk_yi), 1 = 1,2 are Bogoliubov transformations which induces a
mass shift and R(6) is a rotation.

Their action on the mass vacuum is:

012 = B7101,0)|0)12
= H[cos@kz—i—e sm@l”ozkZ }|O>
k,r
RH0)[0)12 = [0)12

e A rotation of fields is not a rotation at the level of creation and
annihilation operators!

20



Flavor Vacuum

e The flavor vacuum is defined by®:

10)e. = Gy (0) |0)1,2

In the infinite volume limit:

3 232
. . V[ -4k 111(1—511129|Vk\2)
lim 01[0 = lim e 7 @03 =
V—oo 1’2< | >e7u V—oco

where

Vil? = D[ ui, P#0 for m, £m,
8

6M.Blasone and G.Vitiello, Ann. Phys. 244, 283 (1995)

0
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Vacuum condensate

I?

Solid lin

e Condensati

0.5

0.4 J——

1 10 100 000

Log|k| !
e: my = 1, mo = 100; Dashed line: m; = 10, m, = 100.

on density: e7u<0|agiak,i\0)e’ﬂ = sin? 0| Vi |?, with

i =1,2. Same result for antiparticles.

2
o |Vi|? ~ % for k> /mims.
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Bogoliubov vs Pontecorvo

e [B(my,mz), R7*(#)] # 0: Bogoliubov and Pontecorvo do not

commute!!

As a result, flavor vacuum gets a non-trivial term:

0)e.u = G5 l10)12 = [0)12 + [B(ma,ma), R(0)] [0)1,2

)
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Flavor Vacuum and Condensate Structure

The flavor vacuum is characterized by a condensate structure:

0eue = [TTT [ (1= sin?0 [Vic) = ¢ sin6 coso Vi (a3, 87 5 + apf,67h )
k 7

+e"sin 0 |Vic|| Uy | (a ﬁ 1~ oAcIjQ T 2) + sin? 0 \Vk|20c :Tk,zdngT—TkJ] [0)1,2

e SU(2) (Perelomov) coherent state.

e This vacuum structure can be dynamically generated in an
effective model within a string inspired framework”. The same it
can be generally proved by means of algebraic reasonings®

"N.E. Mavromatos, S. Sarkar and W. Tarantino, Phys. Rev. D 80, 084046
(2009)
8M.Blasone, P. Jizba, N.E. Mavromatos and L.S., arXiv:1807.07616 [hep-th]
(2018)
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Flavor-Energy uncertainty (1)
The flavor-charges
Q. (t) = /d3xﬁ;(a:) Vg (), o= e

are not conserved, i.e. [Qyo (t), H } # 0. It follows a flavor-energy

uncertainty relation?:

- - 1
(A (AQM) > 5|7

d(Q(1) ‘
It follows

AET > Qo y(T), o #p

9M. Blasone, P. Jizba and L.S., arXiv:1810.01648v2 [hep-ph] (2018)
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Flavor-Energy uncertainty (2)

Qcyu(t) = sin®(20) {|Uk|2 sin? (wklgmt) + | Vi |? sin® (wkl_gmt)}
is the exact QFT oscillation formula!® with |Uy|? = 1 — |Vi|?. When
m;/|k| — 0:
02
AE > 2512 (20)

where L,s. = 4m|k|/dm?. Corrections beyond ultra-relativistic regime:

2 sin” 2 k|L
AE > SII/LH [1—5(k) cos? (H%)]

with e(k) = (m1 —m2)?/(4]k[?).
10M. Blasone, P.A. Henning and G. Vitiello, Phys. Lett. B 451, 140 (1999)
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GGF for mixed representation

Green’s functions




Scalar field Mixing

Let us consider the Lagrange density

L(z) = 0.p}(2)0ups(x) — Ph(x) M @)

where
N Pa(z) mi  mip
r) = | , M =
#s() L:B@)] lszA m3,

We proceed as in the fermion case'!. Mixing transformation:

1IM. Blasone, A. Capolupo, O. Romei and G. Vitiello, Phys. Rev. D 63, 125015
(2001)



Flavor vacuum

Got) = exp {0 [$:(0) - 5-(1)]}

with tan20 = 2m?2 5/ (m% —m?), and

Sy(t)

SLt) = =i [ [@)eale) -~ la)l(o)]

Flavor vacuum is defined as for fermions

0)as = G;'(0)]0)1,9
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Green’s functions on the flavor vacuum

Let us consider the Green’s functions:

Gpo(z) = aB0IT[0p(2)@}(0)]|0) a5, po = AB

We would find a generating functional of these Green’s functions:

§221J]

gpa(‘r) = m J=0

We start studying the problem in QM2

12M. Blasone, P. Jizba and L.S., Phys. Rev. A 96, 052107 (2017)
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Canonical transformations in QM

Let us consider a canonical transformation:

where

30



Green’s functions

Our problem is to find a generating functional for all these sets of

Green'’s functions:

iGo(t' —t) = iGoo(t' —1) = (0|T'[4(t')q(t)]10)
iGoa(t' —1) = (0| [4(t); 2)d(t; )] |0)

iGpo(t' —t) = (0(8,1)|T [4(t')4(£)] [0(B,1))
iGpp(t' —1) = (0(B,)IT [4(¢'; B)a(t; B)] 0B, 1))

31



Generating functional

Defining
D iS[p,gial+i [ Tq(t0)q(t;0)
Zoaldy] = lim DM@ _—
tf—>+o00 fD,u(oz) eiS[p,q;al
t;——o00

where q(ts; ) = qr(a), q(ti; @) = gi(@) and

Smm®=[f&MmMMM—HM®MMH

We get

(O[T [g(t2; )q(t1; )] [0) = (=)™ 5Jq(t2;ojz;<]q(t1'a)

ZOa[Jq]
Jy=0

32



Generalized generating functional

By definition

(0(8,t)|T[q(t2; 0)q(tr; 0)][0(B, 1))
= (0|G(t+)T(t2; 0)q(tr; )] GL(t-)]0)

If ty is greater than t; and ¢y, and ¢_ is the smallest:

(0(8,t4)IT[4(t2; @)g(ts; @)]|0(B,-))

o (ar(0), te|T[Ga(t1)d(t; 0)d(ty; )Gl (E-)]lgi(), ti)
B ttfjirgg (g (@), trlgi(a),ts)

33



gp—ordering

We introduce the gp—ordering as follows

O ev:K(ﬁ(t;a),@u;a))} = Z Ky 6t 0)p'(t; )
k,1=0

The latter orders the operator in such a way that all §(7)’s are on the
left and p(7)’s are on the right.

The “classical” gp—ordering is

(g(a), 8|07 [eKPEDAED] [p(a), t)
(¢(a), tlp(a), t)

o [em@(t;ama;a))}

34



Schwinger CTP (1)

Thanks to Feynman-Matthews-Salam formula, we get:

(008, L) T14(tn; @) - - 4(t2; )][0(B, )
a)O

_ oy JPe) O [Ga(t)] OF [Gp(t)] alta; a)q(t; o) ef5Poie)

ty—+oo fDM(a) eiS(p,q;a)
t;——00

Taking the limit t4 — ¢_:

(0(8,8)[T(q(tn; @) - - - 4(t1; @)][0(8, 1))

— lim fc'Du(a) Ozz [Ga(t+)] Ogl [G-5(t-)] q(tn; @) ... q(t1; ) R

ty—>too /Dp(a) etz
ti—>—o0

35



Schwinger CTP(2)

The Schwinger contour C is shown in figure:

Im(t)

ty Re(t)
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GGPF': definition

We define a generalized generating functional of Green’s functions:

2t = ot orten)

Jp=0

where
Du(a) ¢ SPaie)+i [i] atllyDa(ta)+T, (Dp(to)]
Zoalpdy) = lm JDMAE M
tp—r+oo Dp(ar) eSr.ai)
ti——00

37



Mixed representation Green’s functions

Mixed representation Green’s functions can be thus obtained as

52

. /_ _ . _.2 +—
Gl =) = B OV w2 Vi,
iGsg(t' —t) = lim (—4)? i Z371J,]

B tye—t_=t 0J(t'; 8)0J4(t; 5) pp =a J,=0

38



GGF': perturbative approach

If f(B8) = o(B), we can write a perturbative expansion in 8. The
leading-order reads:

— y 6 6
Z;a [Jg = Zoaldg] + i |:K (5Jp(t+;a)’ §Jq(t+;a)>

- % (e i) | 2ol )

Jp=0

39



Vacuum-to-vacuum amplitude

Generalizing our previous definition:

zhol) = K (i )

Jp=

we find that the vacuum-to-vacuum transition amplitude:

(0l0(8,1)) = lim Z5,(0]

40



Translations
Let us start by considering translations

ita) = qt) + «a, p(t) = p(t)

The generator of this transformation is

Go(t) = exp[—iap(t)].
We now consider the Hamiltonian
H(p(t; o), 4(t; )

~2 ~2 2
_ pita) | Eka) (. o
= 5 + > aq(t;a) + >

41



Translations: vacuum to vacuum transition amplitude

We can calculate the generalized GGF:

_ —,i +oo dr +oo dT/Jq . X I Jq o
Z%O[Jq] = e 3 IS AT)IS (7)Go( Vg (")

> z/ﬂ f+°° drJg (7)7—715 fj;o d7Jg(T)0¢_ Go(T—t_)

We can evaluate the vacuum-vacuum transition amplitude

(00(8,1)) = lim Zf5[0] = exp {_i]

42



Translations: Mixed representation Green’s functions

We can calculate mixed representation Green’s functions:

iGao(t' —t) = iGo(t' —t) + B cos(t —1t')

iGap(t' —t) = iGo(t' —t)

where

ig()(t/ o t) _ |:9(t/ o t)efi(t’ft) + Q(t - t/)ei(t’,t):|

NN

is the harmonic oscillator Feynman propagator.
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Mass vacuum partition function

The generating functional of Green’s functions on the mass vacuum

can be derived:

Z[J,] = e ifd'= fdIL@) A1) To()

where the flavor propagator is:

Ap(w—y) =
AIE(:E —y)cos? 0+ AZ(z —y)sin?0 (AZ(z—y) — AkL(z —y))cosfsind
(AZ(z—y) — AL(z —y))cosOsin® AZ(z—y)cos? 0+ AL (z —y)sin?0

Here A}l and A% are scalar propagator of fields with definite masses.
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Flavor generating functional: a perturbative approach

For 0 < 1 we get!'3:

where

i /dgx ] J B 5 0
6Jra(t,x) 05 p(t,x)  6Jpa(t,x) 0] p(t,x)

13M. Blasone, P. Jizba and L. Smaldone, J. Phys. Conf. Ser. 880, 012051 (2017)
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Generating functional on the flavor vacuum

The result is:

ZplJp)l ® Zlpl{1—
0 [Pxy [ate faty [-5% L@or, A% @ -2 aPP @y w1y, s
F 050 @A @ w0y APPGy —y)a, 5

Hp,a@or_ A% (@ — 2 )aPP@_ — )il s

— Jpa@a® @ —e_yo__ APl —yl 5w

~Tp p@AP @ —ayor, A @y — )T o (v)

+ Ip 5@ 0r APB @ —a At @y — I ()

475 5@aPP @ -2 yor AR (e~ y)Jpa)
=05 5@0r, APB @ o)A @ — ) Tpaw)]} -
where
Ty = (74,X) - = (7-,%)
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Conclusions and perspectives




Conclusions and perspectives

e QFT is characterized by unitarily inequivalent representations of
canonical (anti)commutation relations.

e The study of flavor mixing in QFT reveals an exotic vacuum
structure. The problem of evaluating Green’s functions on the
flavor vacuum led us to a generalization of the standard
generating functional of Green’s functions. This opens new
opportunities in the study of flavor oscillations.

e These objects can be related to coherent state path integrals'®.

The relation with Perelomov coherent state path integrals has to
be established.

14M. Blasone, P. Jizba, L. S., J. Phys. Conf. Ser. 965, 012008 (2018)
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Thank you for the attention!
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