PLASMONX: project status

Danilo Giulietti

INFN, Pisa, Italy

On behalf of the PLASMONX Team

PLASMONX LINEE GUIDA E MILESTONES

***COMMISSIONING FLAME** *SITE ***T.S. & EXTERNAL INJECTION** *SUPPORTO SPERIM. & TEORICO *FORMAZIONE ***INSERIMENTO INTERNAZIONALE** *WORKSHOP @ LNF, PRIMAVERA 2010

Contents

- FLAME lab general layout;
- An overview of the laser system;
- FLAME target area for laser-only experiments;
- •Primo esperimento Italiano di LPA
- Self-injection Test Experiment;
- •External injection;
- Agenda July '09 March 2010
- **RICHIESTE FINANZIARIE**
- Conclusions

The FLAME laboratory

The FLAME laboratory - update

The FLAME laboratory – general layout

Thomson scattering from plasma electrons In the high intensity region

> Plasma self-emission from gas ionisation

Gas-jet nozzle slit

Scattered laser light

A XOP VIEW OF THE INTERACTION

s seen in the optical domain

ELECTRON BEAM He@50 bar

The LANEX screen shows a collimated electron beam.

Electron spectrum

FLAME LASER

FLAME laser: specifications

Repetition Rate Energy (after compression) Wavelength Pulse duration Peak power ASE contrast Pre-pulse contrast 10 Hz up to 6 J (typ. exp. 5.6J) 800 nm down to 20 fs (typ.23 fs) up to 300 TW $< 10^{10}$ $< 10^{-8}$

Front end @

AMPLIFIER #3 – THE POWER AMPLIFIER

AMPLIFIER #3 – THE POWER AMPLIFIER

POWER AMPLIFIER – output energy

POWER AMPLIFIER – extraction efficiency

POWER AMPLIFIER - spectrum

7J spectrum

POWER AMPLIFIER

Pictures of the Ti:Sa crystal inside the cryostat

FLAME LASER Cryo-power amplifier's 5 cm Ti:Sapphire crystal pumped with 15 J green

Ti:Sa Crystal

Cryostat chamber

Ti:Sa fluorescence

THE COMPRESSOR: spectral control

THE COMPRESSOR sub-ns contrast

THE COMPRESSOR: ps contrast

SUMMARY OF FLAME LASER

Summary of performances before shipping

- Energy before compression @ 7 J
 Vacuum compressor transmission > 70%
 - Pulse duration @ < 25 fs
 - ASE Contrast ratio @ 5.10⁻¹⁰
 - RMS Pulse Stability @ 0.8 %

Enhancement of pumping configuration/extraction efficiency;
 Full vacuum compression test to be performed at LNF;

ENHANCING LASER FLEXIBILITY

POLARIZATION CONTROL (S, P, CIRCULAR) Established contact with manufacturer (limiting factor: diameter and thickness of required crystals); **FREQUENCY CONVERSION** (400 nm operation) Same as above plus recent involvement in « Happie », **LASERLAB** Joint Research Activity (IPCF-CNR Subcontractor of LULI); **CONSTRAST ENHANCEMENT** (plasma mirror, frequency doubling); collaboration with CEA-Saclay **ADAPTIVE OPTICS** for focal spot quality control and tailoring, collaboration with CLPU-Salamanca ULTRA-HIGH intensities (≈10²¹ W/cm²) with ellipsoidal plasma mirror ... And more

PRIMO ESPERIMENTO TUTTO ITALIANO DI LPA A PISA

Thomson scattering from plasma electrons In the high intensity region

> Plasma self-emission from gas ionisation

Gas-jet nozzle slit

Scattered laser light

A XOP VIEW OF THE INTERACTION

s seen in the optical domain

ELECTRON BEAM He@50 bar

The LANEX screen shows a collimated electron beam.

Electron spectrum

Self-Injection test experiment (SITE)

THE "TEST" SELF-INJECTION EXPERIMENT

<u>MAIN TASK</u>: establish performance of the FLAME laser system in real experimental conditions and test target area operations and procedures

A supersonic gas-jet is used as a target. gas-jet targets have been successfully used and tested in the CEA-Saclay and "pilot| Pisa esperiment and offer ideal conditions for both self-injection measurements and laser pulse characterisation via optical probing

A.Giulietti et al. Phys.Rev.Lett, 105002, 2008.

Self-injection simulations (di C. BENEDETTI ET AL.,)

• (Half power) FLAME laser

P =150 TW,
$$\tau_{fwhm} = 24$$
 fs

waist: $w_0 = 8 \div 40$ ($1/e^2$ radius of the laser intensity profile, $w_{fwhm} \simeq 1.2 w_0$)

In norm. vector potential $a_0 \equiv \frac{eA_{laser}}{mc^2} = 8.5 \cdot 10^{-10} \sqrt{I[W/cm^2](\lambda[\mu m])^2} \ge 2$

- Two regimes:
- 1. $w_0 < \lambda_p \Rightarrow$ Nonlinear 3D regime (bubble)
- 2. $w_0 > \lambda_p \Rightarrow$ Nonlinear "1D-like" regime (+ properly modulated gas-jet)

SIMULAZIONI self-injection (di C. BENEDETTI ET AL.,)

• Nonlinear 3D regime (bubble) ^a

^aS. Gordienko and A. Pukhov, Phys. Plas. 12 (2005) / W. Lu et al. PRSTAB 10 (2007)

SIMULAZIONI ALADYN (di C. BENEDETTI ET AL.,)

Studies for the SITE

Nonlinear 3D regime (bubble): phenomenological theory [W. Lu & al., PRSTAB 10 (2006)]

stability" of the bubble:
$$k_p R_{bub} \simeq k_p w_0 \simeq 2\sqrt{a_0}$$

- dephasing length: $L_d = \frac{2}{3} \frac{\omega_0^2}{\omega_p^2} R_{bub}$
- pump depletion: $L_{pd} = \frac{\omega_0^2}{\omega_p^2} c \tau_{fwhm}$, shuld be L_{pd} > min(L_{gasjet}, L_d)

$$e - \text{energy (dephasing): } W[\text{GeV}] \simeq 1.7 \times \left(\frac{P[\text{TW}]}{100}\right)^{1/3} \left(\frac{10^{18}}{n_p[\text{cm}^{-3}]}\right)^{2/3} \left(\frac{0.8}{\lambda_0[\mu\text{M}]}\right)^{4/3}$$
$$\text{charge injected: } Q[\text{pC}] \simeq 400 \times \left(\frac{0.8}{\lambda_0[\mu\text{M}]}\right) \left(\frac{P[\text{TW}]}{100}\right)^{1/2}$$

• Nonlinear 3D regime (bubble) for a FLAME-like laser: P = 200 TW, $\tau_{fwhm} = 30$ fs

Taking the waist w_0 as a free parameter ($R_{bub} \simeq w_0$), we have

$$n_{p} [\text{cm}^{-3}] \simeq 8.7 \cdot 10^{21} / (w_{0} [\mu\text{m}])^{3}$$

$$L_{d}[\mu\text{m}] \simeq 0.13 \times (w_{0} [\mu\text{m}])^{4}$$

$$L_{pd}[\mu\text{m}] \simeq 1.8 \times (w_{0} [\mu\text{m}])^{3}$$

$$W[\text{MeV}] \simeq 79 \times \frac{L_{gasjet}[\mu\text{m}]}{(w_{0}[\mu\text{m}])^{2}} \left(1 - \frac{3.75 \times (L_{gasjet}[\mu\text{m}])}{(w_{0}[\mu\text{m}])^{4}}\right) \quad \text{(for } L_{d} \ge L_{gasjet}/2\text{)}$$

$$Q \simeq 0.5 \div 0.6 \text{ nC}$$

SIMULAZIONI ALADYN (di C. BENEDETTI ET AL.,)

Studies for the SITE

Planned experimental set up

Pulsed gas-Jet nozzle

Nozzle size: 4mm x 1.2mm or 10 mm x 4 mm <u>Possible application of a continuous gas-jet under consideration</u> (v. talk L. Gialanella, Ven 20. H.11.10)

Courtesy of T. Hosokai, Tokyo Institute of Technology

FLAME Target Area

FLAME Target Area

FLAME Target Area

Planned experimental set up

Spettrometro per elettroni

Finalita': misura spettro energetico elettroni accelerati

Energia massima:

- Primi test di prova con p ≈10 MeV, esperimenti a piena potenza possono raggiungere l'energia di 10 GeV

- L'accelerazione di ioni prevede la produzione di protoni con T≈10Mev

Risoluzione:

≈1% su largo range

Forma del fascio iniziale:

-Sorgente puntiforme con 1mrad dispersione angolare iniziale

Contact: R. Faccini et al. ,,,

Prestazioni previste del prototipo

Errore relativo vs momento

"TEST" EXPERIMENT DIAGNOSTICS

OPTICAL DIAGNOSTICS FOR LASER PROPAGATION STUDIES

Thomson scattering

Femtosecond optical probing

Transmitted and scattered beam spectroscopy

ELECTRON DIAGNOSTICS FOR ELECTRON ACCELERATION MEAS.

Establish self-injection acceleration conditions

Provide benchmarking for modelling

Agenda for next 6-8 months

- Completion and commissioning of subsystems:
 *Clean room, Cooling network, Ethernet (before end of July '09)
- Full laser installation (Sept. 15th December 2009, in phases;)
- Assembling of transport line from optical compressor to experimental target chamber (July September '09)
- Assembling of self injection test experiment diagnostics (September December '09)
- Laser on (gas-jet) target at >50 TW lavel Feb-March 2010.

Conclusions

- Installation of main subsystems in progress Clean room, Laser, Cooling, Conditioning;
- Components of beam transport line in production;
- Design of test experiment completed;
- Construction of electron spectrometer in progress;

•

Schematic layout of electron beam lines for FEL, Plasma Acceleration and Thomson Source experiments

Last-beam line 30-150MeV

Runs with the GA to minimize the $\Delta E/E$, the emittance and to reach the needed energy

2009

Block diagram with dimensions; scattering area with final focusing magnetic elements, diagnostic devices

every magnetic element has been designed and specified to the engineering level; the acquisition procedure of the magnetic elements has started

```
CdS, Milano, 14 luglio
2009
```


Focusing solenoid Maximum field = 1.0 [T] (J = 3A*mm^2)

Dumping dipole 200 mm length, center at 300 mm from (IP), J=2.5A*mm^2 no shield since the fringing field results in a beam deviation at the IP of the order of 50μm

Plane mirror supports

Simulation - Laser temporal profile at IP

Delivery from the company within the end of July 2009

Electron beam on the Mirror (accidental no beam deflection)

IFEL Interaction

In an FEL energy in the e-beam is energy from a radiation field. transferred to a radiation field High power laser $\lambda_{r,n} = \frac{\lambda_u}{2\nu^{2n}} \left(1 + \frac{K^2}{2} \right)^{\frac{1}{2}}$ Somewhat arbitrary

Undulator magnetic field to couple high power radiation with relativistic electrons

$$K_l = K_l$$

laser heater, etc. Significant energy exchange between the particles and the wave happens when the resonance condition is satisfied.

For large acceleration -> need for undulator tapering

In an IFEL the electron beam absorbs

separation line. Include in

IFEL all optical

manipulation schemes:

bunchers, modulators,

UCLA tapered undulator @ LNF

Use *unique* capabilities of SPARC + FLAME.

High brightness beamHigh power laser in same facility.

UCLA has already available

	and aculd h	and the	<u>atra a alu</u>	1
t		Initial	Final	e
	Period	1.5 cm	5.0 cm	
	Field Amplitude	0.12 T	0.6 T	
	Peak K parameter	0.2	2.8	
	gap	12 mm	12 mm	

IFEL@LNF experiment

UCLA tapered undulator @ LNF

Use *unique* capabilities of SPARC + FLAME.

High brightness beamHigh power laser in same facility.

UCLA has already available

	and aculd h	and the	<u>atra a alu</u>	1
t		Initial	Final	e
	Period	1.5 cm	5.0 cm	
	Field Amplitude	0.12 T	0.6 T	
	Peak K parameter	0.2	2.8	
	gap	12 mm	12 mm	

A new helical undulator for a phase-2 IFEL acceleration experiment at SPARC

Assume typical parameters for ⁻ SPARC / FLAME ⁻

Aim at maximum final energy with 2 m long undulator

Parameter	Fixed Value
lnitial <i>e</i> -beam energy (γ value)	180 MeV
Initial <i>e</i> -beam intrinsic energy spread	0.1% (1σ)
Initial <i>e</i> -beam current	1 kA
Laser wavelength	800 nm
Laser peak power	20 TW
Nominal length of wiggler, L_w	200 cm
Rayleigh range	20 cm
Location of laser waist inside wiggler	100 cm
Resonant phase angle ψ for wiggler	var

Tapering optimization

- Helical undulator to maximize energy exchange (interaction always ON).
- Keep magnetic field amplitude well under the Halbach limit for a gap = 6 mm to ensure technical feasibility.
- Starting from initial energy 180 MeV
- Final energy spread <0.6 %, to be decreased with appropriate choice of resonant phase exit.

SITUAZIONE DELLE PROPOSTE DEL PROGETTO STRATEGICO "NUOVE TECNICHE DI ACCELERAZIONE" PER IL BILANCIO 2009

			INTERNO		ESTERO		CONSUMO		SEM	TRASPORTI		DUD	CALCOLO		MA	Ν.	INVEN	TARIO	APPARATI		TOT. PARZIALI			
NOTE	SIGLA	Sez.	Assegn.	S.J.	Assegn.	Sub-Jud	Assegn.	Sub-Jud		Assegn	S.J.	FUB	Assegn.	S.J.	Ass.	S.J.	Assegn.	Sub-Jud	Assegn.	Sub-Jud	Assegn.	Sub-Jud	GENERALE	
	NTA-PLASMONX	во	7		5		2														14		14	
	NTA-PLASMONX	LNF	10		8		9												96		123		123	
	NTA-PLASMONX	мі	15		12		5														32		32	
	NTA-PLASMONX	мів	7		3		3														13		13	
	NTA-PLASMONX	NA	3		2		3														8		8	
	NTA-PLASMONX	ΡI	20		7		40								10				90		167		167	
	Totale S	igla	62		37		62								10				186		357		357	

- per Sigla -

PREVENTIVO GLOBALE DI SPESA PER L'ANNO 2010

ln K€

a		A carico dell'I.N.F.N.															A carico di		
Struttura	interno		estero		consumo		trasporti		manutenzione		inventario		apparati		licenze-SW		тот	ALI	altri enti
BO	5.00		5.00		11.00												21.00		
LNF	10.00		20.00		9.00						34.00		59.50				132.50		
LNS	10.00		5.00		3.00		2.00										20.00		
MI	20.00		15.00		5.00	\Box							65.00				105.00		
MIB	8.00		2.00	\Box	3.00	\Box					5.00						18.00		
NA	12.00		20.00		15.00		2.00		4.00		41.00				4.00		98.00		
PI	35.00		15.00		33.00		2.00		15.00		102.00		15.00		8.00		225.00		
RM1	5.00		5.00		30.00						56.00						96.00		
Totali	105.00		87.00	Π	109.00	\square	6.00		19.00		238.00		139.50		12.00		715.50		

Mod. EC/EN 4

(a cura del responsabile nazionale)