

Gran Sasso, LNGS

Contents

- Institute for Basic Science
- CUP
- Search for $0\nu\beta\beta$ Status of AMoRE
- Search for sterile neutrinos Status of NEOS
- Future plan

Institute for Basic Science

- Began to promote basic science of Korea in 2012.
- In 2017, 28 Research Centers are established.
- Radioactive Beam Accelerator Project is included.
- Benchmarking for Max Planck Institute and RIKEN.
- Each center budget : 3M 10 M\$ / year
- 5+3+3.. evaluation system.

1st, Se Jong Oh

Current, Doo chol Kim

all over the world

 Facilitate collaborations with a network of academics and institutes

Overview of IBS

- 28 Research Centers :
 - 1. Headquarter centers (5):
 - 2. Campus centers (14):
 - 3. Extramural centers (9)
- Radioactive Beam Accelerator
 Project is under construction.
- Each center budget : 3M − 10 M\$ / year, Total 300 M\$
- ~ 1000 employees.

CAPP (Center for Axion and Precision Physics)

CTPU (Center for Theoretical Physics of Universe) CUP (Center for Underground Physics)

Rare Isotope Science Project (RISP) in Korea

• Project period: 2011 12. – 2021 12. (10.1 years)

Project cost: ~\$1.3 B

-Accelerator and experimental systems: ~\$ 420M

-Conventional facility: ~\$560M

-Land: ~\$ 320M

• Nuclear Astrophysics

Exotic nuclei

Superheavy element search

Goal of CUP

AMORE COSINE NEOS LZ **EXO GBAR**

> Creativity & Cooperation

New Domestic & International IBS Support &

Infrastructure

Previous Labs & Techniques

2000 -KIMS, RENO, XMASS

- **Discovery of Dark Matter** and Neutrino Physics
- Construct world class underground laboratory
- Nurturing next generation astroparticle physicists
- World class research facility for ultra-rare events

IBS-HQ (2018. 2 -)

+ Yemi Lab.

Figure I-14: CUP sputter installed in cl ass-1000 clean room

1. Dark Matter Search - COSINE

Joint effort to search for dark matter interactions in NaI(Tl) scintillating crystals. (Goal to verify DAMA/LIBRA's observation)

2. Search for Neutrinoless double beta decay - AMoRE

Observation of 0νββ

- will confirm
 - Neutrinos are Majorana particles and have Majorana masses.
 - Lepton number non-conservation.
- will support on
 - See-Saw model of the neutrino mass.
 - Leptogenesis to account for the baryon asymmetry of the universe.

Neutrino mass from 0νββ experiment

- **Half-lives of** 0vββ inversely proportional to (effective neutrino mass)² by theory.
- To discover $0\nu\beta\beta$, we need a good energy resolution and extremely low background at that energy.

$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix}^{-1} = G_{0\nu} \left| M_{0\nu} \right|^2 \left(\frac{m_{\beta\beta}}{m_e} \right)^2$$

$$\begin{array}{c} \text{Half-life} \\ \text{Measured} \end{array} \qquad \begin{array}{c} \text{Nuclear} \\ \text{Matrix Element} \end{array} \qquad \begin{array}{c} \text{Neutrino} \\ \text{Mass} \end{array}$$

for light neutrino exchange model.

Discovery probability

- Discovery probability for NO and IO assuming logarithmic mass distribution and flat in the angles and phases.
- Even normal hierarchy, the probability is high ~ 50% in 5 years for next generation experiments.

Current best results for 0νββ

Nucl.	Q (keV)	Abun. (%)	$\begin{array}{c c} T_{1/2}^{2\nu} \\ (10^{20}\mathrm{Y}) \end{array}$	Exp	$T_{1/2} \ (10^{24} \mathrm{Y})$	M (eV)	Ref.
⁴⁸ Ca	4270.0	0.187	0.44	CANDLES	> 0.058	<3.1-15.4	PRC 78 058501 (2008)
⁷⁶ Ge	2039.1	7.8	15	GERDA-II	>53	<0.15-0.33	Nature 544, 47 (2017)
⁸² Se	2997.9	9.2	0.92	CUPID-0	> 2.4	<0.38-0.77	PRL120, 232502 (2018)
¹⁰⁰ Mo	3034.4	9.6	0.07	NEMO-3	>1.1	<0.33-0.62	PRD89, 111101 (2014)
¹¹⁶ Cd	2813.4	7.6	0.26	AURORA	> 0.22	<1.0-1.7	PRD98, 092007 (2018)
¹³⁰ Te	2527.5	34.5	9.1	CUORE	> 15	<0.11-0.52	PRL120, 132501 (2018)
¹³⁶ Xe	2458.0	8.9	21	KamLAND -Zen	> 107	<0.06-0.16	PRL117, 082503 (2016)
¹⁵⁰ Nd	3371.4	5.6	0.08	NEMO-3	> 0.02	<1.6-5.3	PRD 94 072003 (2016)

Cryogenic experiments begin to produce the best limits in 2018.

Why ¹⁰⁰Mo ?

Expected Half-lives

- ¹00Mo is expected to have a smallest half-life except ¹50Nd.
- Natural abundance ~ 10 % → enrichment cost is moderate.
- Background will be low for Q>3MeV. (Q=3.034 MeV for ¹⁰⁰Mo)
- We need data for multiple isotopes to study the various models with data if discovery is done for any isotope.

"zero" Backgrounds

• If "zero" backgrounds in ROI(Region of Interests), the half-life limits are proportional to the detector mass and DAQ time. If finite backgrounds, sqrt (MT).

$$T_{1/2}^{0\nu} \propto MT$$
 (for zero backgronds)

$$T_{1/2}^{0\nu} \propto \sqrt{\frac{MT}{b\Delta E}}$$
 (for finite backgrounds)

Overview of AMoRE Project

Principle of AMoRE detector

- Use Mo containing Scintillating Bolometer: (40Ca,X)100MoO₄ + MMC
- For Each crystal, phonon and photon sensors made of MMCs+SQUIDs to separate alphas (background) and betas (signal).

Metallic Magnetic Calorimeter (MMC)

- Paramagnetic alloy in a magnetic field
 Au:Er(300-1000 ppm), Ag:Er(300-1000 ppm)
 - → Magnetization variation with temperature
- Readout: SQUID
- High energy & timing resolution, Good linearity, Large dynamic range, No bias heating, Absorber friendly
- More wires & materials needed for SQUIDs and MMCs

Plan of AMoRE Project

- 100 kg ¹⁰⁰Mo double beta decay experiment, largest experiment Q> 2614 keV
- One of two ¹⁰⁰Mo DBD projects.

 $^{40}Ca^{100}MoO_{4}$

 $\sim 1.9 \text{ kg}$

AMoRE Pilot

 $(^{40}\text{Ca,X})^{100}\text{MoO}_{4}$

~ 6 kg

AMoRE-I

X = Li, Na, Pb...

$(^{40}\text{Ca,X})^{100}\text{MoO}$
200 kg
AMODE II

	Pilot	AMoRE-I	AMoRE-II
Crystal Mass (kg)	1.9	6	200
Background Goal(ckky)	<10-1	<10-3	<10-4
Schedule	2015-2018	2019-2020	2021-2025

With AMoRE-II
$$T_{1/2}^{0\nu} > 8.2 \times 10^{26}$$
 years 13-25 meV

AMoRE-Pilot Setup

- To demonstrate the detection principle and low backgrounds.
- 6 crystals making total mass 1.89 kg.
- Two vibration reduction systems are installed.

Energy Calibration

Energy Resolution at ROI (3034 keV)

10.6 – 17.3 keV (FWHM)

PSD

Discrimination Power (DP) in both Rise Time and Light/Heat ratio are used.

10 - 18 at least RT or L/H

$$DP = \frac{\left|\mu_{\beta} - \mu_{\alpha}\right|}{\sqrt{\sigma_{\beta}^2 + \sigma_{\alpha}^2}}$$

Crystal (mass)	DP _{L/H}	$\mathrm{DP}_{\mathrm{RT}}$
Crystal 1 (196 g)	7.07	18.0
Crystal 2 (256 g)	15.1	6.22
Crystal 3 (350 g)	14.1	4.12
Crystal 4 (354 g)	11.3	12.5
Crystal 5 (390 g)	10.2	9.64
Crystal 6 (340 g)	8.30	17.2

Muon veto counters

- 5cm plastic scintillator with multiple 2" PMTs.
- There is a gap between TOP and SIDES plates.
- About 2140 muons passing a day. 388 muons/day/m² on TOP plate.

Number of Entries

Background spectrum at ROI

- 111 (kg day) exposure.
- Total 80 events at ROI (2850-3150 keV)
- 17 events are vetoed by muon tagging (0.19 ckky) ($\Delta T < 100\mu$)
- 13 events are vetoed by Tl208 decay alphas. (0.14 ckky)
- \rightarrow 50 events are left as backgrounds. \rightarrow 0.55 ckky
- $\rightarrow T_{1/2}^{0\nu} > 9.5 \times 10^{22} years (90\%)$

30 min veto after each 6.2 MeV alpha

Now let's try to understand backgrounds

Activity (uB/kg)

Crystal	Mass (g)	U-238 (²¹⁴ Po)	U-235 (²¹⁵ Po)	Th-232 (²¹⁶ Po)
SB28	196	180(10)	310(10)	37(4)
S35	256	2490(30)	960(20)	870(20)
SS68	350	36(3)	79(5)	13(2)
SE01	354	136(5)	48(4)	12(2)
SB29	390	126(5)	315(9)	56(3)
SE02	340	31(3)	53(4)	11(2)

For AMoRE-I setup, with 6.2 MeV alpha veto, Th: 50 microBq/kg → ~10⁻³ ckky

(2) Radioactive components in detector unit

- Connectors, glue, and PCB boards were highly radioactive from HPGe measurements.
- Removed these parts for current run in Pilot setup.

(3) Flat backgrounds up to 8MeV

Simulated spectra from the radioactivity measurements vs data.

Weighted Average Rate of Six crystals

Comparison shows;

- Active components should be one of dominant backgrounds @ ROI.
- Data has more flat background at E>4MeV.

Flux(thermal neutron) measured ~ 2x10⁻⁵ /cm2/sec

Neutron capture

- Neutron capture and scattering length for materials are calculated from ENDF database
- Cu has larger capture probability than Fe, but Fe is abundant. Scattering lengths are similar.

Fe at OVC, Pb container, etc. & Copper inside IVC may be the source.

Neutron Shielding for AMoRE-pilot

Additional neutron shielding are added inside and outside of Pb shielding to confirm the neutron capture backgrounds are removed.

Background reduction in Pilot data

 After removing active components and adding neutron shielding, we have reduction of backgrounds to ~ 50% and ~ 25% respectively.

material will be installed for AMoRE-I run.

Muon & neutron simulation – AMoRE-II

AMoRE-II setup

200 kg of CMO array are simulated to compare water and lead shieldings.

Pb shielding

Water shielding

Geometry for muon simulation

Results of AMoRE-II

- In both shielding, it is possible to have the backgrounds below 10⁻⁵ ckky.
- In case of lead shielding, need additional 50cm PE and BPE shielding.

Energy (eV)

Decision on crystals for AMoRE-II

- CMO (CaMoO₄) is a very good crystal with the largest light output, but CMO has a disadvantage that we need ⁴⁸Ca depleted isotopes, expensive.
- LUMINEU group decided to use LMO (Li₂MoO₄), and we are working on LMO, PMO (PbMoO₄), & NMO (Na₂Mo₂O₇), crystals.

Carretol	Emission	LightYield(10K)		Decay time	d on altre	Mo
Crystal	(nm)	280nm	X-ray	(μs)	density	Fraction
CMO(Ukra)	540	100	100	240	4.34	0.49
ZMO(NIIC)	614	63	35		4.37	0.436
LMO(KTI)	535	1	5	23	3.03	0.562
PMO(NIIC)	592	11	105	20	6.95	0.269
NMO(NIIC)	663	75	9	750	3.62	0.558

CMO (CaMoO₄) LMO (Li₂MoO₄) NMO (Na₂Mo₂O₇) PMO (PbMoO₄)

Test on Li₂MoO₄ crystals from NIIC

size : ϕ 5cm × h 4.7cm Polishing material - Diamond

Crystal cleaning : Methanol + O₂ plasma Asher

Muons at ground level

4.8 MeV alpha from ⁶Li(n,t)alpha

DP ~ 9 from light/heat ratio

LMO+MMC is working!

Measurements for ¹⁰⁰MoO₃ powder

- 120 kg of ¹⁰⁰MoO₃ powder (10 M\$) from ECP, Russia.
- The finite background level is measured for the first time for ²²⁸Th with HPGe Array detector (CAGe, 900 % relative efficiency).

Results:

- 226 Ra: 1.7 ± 0.3 mBq/kg, 228 Th: 0.26 ± 0.06 mBq/kg. (First measurement)
- Observed 88 Y produced by cosmic rays : 33 ± 8 mBq/kg. \rightarrow compared with the model.

ICP-MS measurements

Th (ppt)

- ^{238}U : 76~257 ppt, ^{232}Th : 35~87 ppt
- U, Th chains are in equilibrium contrary to natural MoO3.

Summary of Chemical Purification Results

Ba is a good indicator for Ra since they are in the same family. \rightarrow Both 226 Ra & 228 Ra (5.7 year) \rightarrow 228 Th are related to Ba.

Impurities by ICP-MS (ppb for Ba, ppt for U,Th)

We have purified natural MoO₃ better than enriched powder.

Impurity and Activity

1st enriched Li₂100MoO₄ crystal grown at CUP

We have grown an enriched LMO crystal without any purification to check what level of contamination would be reached by only from crystal growing process.

 $\text{Li}_2\text{CO}_3 + \text{MoO}_3 \rightarrow \text{Li}_2\text{MoO}_4 + \text{CO}_2$

CZ02-L1803E

mass: 607.2 g (including seed)

diameter: 50.0 ~ 51.3 mm

Total length: 136.0 mm

Body length: 64.4 mm

Crystals with Natural Mo

CZ02-L1705 CZ02-L1706 (Sublimed MoO₃) (Sublimed MoOs)

CZ02-L1707

(Sublimed MoO₃)

CZ02-L1801 (Double crystallization)

3. Search for sterile neutrinos - NEOS

- All these anomalies indicate m_v~ eV mass right-handed sterile neutrinos.
- Sterile neutrinos may show up in the oscillation at short baseline.

- Reactor Neutrino Oscillation already observed @ ~50 km and ~1 km.
- We have performed a quick experiment to check the reactor neutrino anomaly, NEOS, at a baseline of 24m from a nuclear reactor at RENO site.

Reactor

Tendon Gallery at Hanbit

- •~25 m from 2.8 GW_{th} reactor
- ~10 m concrete overburden

- NEOS data shows clean signal due to large overburden at Tendon gallery.
- We could give a most stringent limit at the reactor anomaly parameter region.

NEOS-II is running from Sep. 2018.

- To cover whole burn-up cycle (1.5 years data) to check Daya Bay claim.
- To measure antineutrino spectra more precisely.

F.P.An et al., PRL 118, 251801 (2017)

Discrete antineutrino spectra expected. Sonzogni et al. PRC98, 014323 (2018)

Neutrino-4 experiment @ Reactor SM-3, RUSSIA

Detector segmented in 10 layers Detector moved 7-11 meter Total 24 positions for all layers.

arXiv 1809.10561. Surprising figures!

Best fit $\Delta m^2 = 7.34 \text{ eV}^2$, $\sin^2(2\theta) = 0.44$ Observed, 24p, 500keV Reactor ON N(L, E)/N(L,E)_{average} 1 5.7 $\Delta m^2 = 7.34 \text{ eV}^2$, $\sin^2(2\theta) = 0.44 \quad \chi^2/\text{DoF}$ 16.49/25 GoF 0.90 χ²/DoF 30.15/27 Unity GoF 0.31 1.5 2.0 2.5 3.0 3.5 4.0 4.5 1.0 L/E

It is under discussion to use NEOS scintillator for next phase of Neutrino-4 experiment to improve S/N ratio.

Future: a new underground lab.

- Important Concepts
- An independent entrance (human vertical elevator) from mine activity.
- The construction starts early of 2019 and be completed by end of 2020.

Bird view of Handuk Iron Mine

Large (>2000m²), deeper (1100m depth)

The underground laboratories

- 8 experiments with 12 spaces
- 10 utility rooms

Construction

Winder room

IBS elevator

Ground Lab.

Schedule

Summary

- CUP has strong and challenging science programs including COSINE.
- AMoRE project aim to be sensitive to 10²⁷ year range for ¹⁰⁰Mo isotope.
- Understood detector performance and identified background sources through AMoRE-Pilot. Will confirm low background further in AMoRE-I.
- AMoRE-II will begin end of 2020 at a new underground laboratory with a goal of "zero" background.
- Searching short baseline neutrino oscillation will continue at reactor sites to sense the unexplored parameter space by collaborating HEP community.
- CUP is making future plan for a new YEMI underground lab.

Grazie!

Comparison of cryogenic experiments

Exp	Q (keV)	Crystal	ΔE (keV)	T(rising) (ms)	Bkg@ROI (ckky)	Comment (Mass of isotope)
CUORE (130Te)	2527.5	TeO2	7.7	~100	0.014	Copper holder surface
CUPID-0 (82Se)	2997.9	ZnSe	23	~13.5	0.0032	muons, neutron capture(?)
CUPID-Mo (100Mo)	3034.4	LiMoO4	~6	~16	0.06	Active components 5kg (2019)
AMoRE (100Mo)	3034.4	CaMoO4 (X)MoO4	~15	~2	0.55 → ~0.1	Neutron capture 35 kg (2021) 100kg(2023)

Layout of accelerator and experimental systems

Total DC equivalent voltage: ~600 MV

Decided not to be constructed

	Driver Sc-Linac (SCL1+SCL2)				Post (SCL3)	Cyclotron	
Particle	Н	0	Xe	U	RI beam	proton	
E (MeV/u)	600	320	251	200	18.5	70	
I (pµA)	660	78	11	8.3	-	1000	
Power (kW)	> 400	400	400	400	-	70	

- IF (In-flight) separation
- ISOL (ISotope On Line) separation
- · ISOL+IF

Analysis for alpha-alpha Events

→ Position dependence seems to be the dominant factor of the energy resolution.

Identify critical radioactivity

- Go through all known nuclei decaying β with Q > 3.02MeV in NNDC database.
- 110mAg(3010.5 keV) doesn't contribute for Mo experiment.
- Cosmogenic excitation is negligible after 1 year at underground.
- Only Thorium and Uranium natural radioactivity are critical for Q> 3.02MeV. → Great advantage to run high Q-value nuclei!

El	Decay	$T_{1/2}$	Q	Mother	Chain	Comment
			MeV	N/A		
26 Al	EC	$7.4 \times 10^5 \text{y}$	4.004	N/A		Long lifetime
⁵⁶ Co	EC	0.21y	4.567	N/A		Short lifetime
⁸⁸ Y	EC	0.29y	3.623	88 Zr (0.23 y)		Short lifetime
¹⁰⁶ Rh	B-	30s	4.004	106 Ru(1.02y)		
¹²⁶ Sb	B-	12.5d	3.670	126 Sn(2.3x10 5 y)		Long lifetime
¹⁴⁶ Eu	EC	4.61d	3.878	¹⁴⁶ Gd (0.13 y)		Short lifetime
²⁰⁸ Tl	B-	3.05m	4.999	²²⁸ Th (1.91 y)	Th232	Main
²⁰⁹ Tl	B-	2.16m	3.970	²³³ U(159200y)	U233	2.1% branching
²¹⁰ Tl	B-	1.3m	5.482	²²⁶ Ra(1600y)	U238	0.02% branching
²¹⁴ Bi	B-	19.9m	3.269	²²⁶ Ra(1600y)	U238	Main

Purification, Ultra-clean crystals for AMoRE

51

- Chemistry group has been successful in powder purification for molybdate crystals.
- Sublimation, Co-precipitation are basic techniques.
- Recovery process from LMO are established for further purification.

Measurements for Vikuiti Film

Results: 7.8m² film is measured!

- 226 Ra: < 0.4 mBq/kg, 228 Th: < 0.6mBq/kg.
- Film roll is ordered specially for the measurement.

New limits for E>3MeV gammas from ²⁰⁸Tl decay

- Do we have gammas E>3MeV from 208Tl decay? Only upper limits.
- 2kg of ThO2 powder is measured. → The limits for 3198 and 3475 keV gammas are lowered by a factor of 10-20! These gammas will not contribute any background for double beta decay experiment.

Indication of oscillation w/ ~ 3 sigma

Oscillation pattern is shown in L/E

$$\Delta m^2 = 7.34 eV^2$$
, $sin^2(2\theta) = 0.44$

arXiv 1809.10561 Surprising figures!

Before this result, CUP wanted to supply Gd-LS to Neutrino-4 exp to investigate high ΔM region.

It is expected that PROSPECT (USA) will confirm this result within a year.

Estimation for AMoRE-I backgrounds

- Tried to identify critical components in the setup for AMoRE-II experiment.
- Currently, "Crystal Bulk" has largest contribution in CaMoO₄ crystal case.
- For AMoRE-II, the Crystal Bulk activity for zero background has been set.

Fine structures in the spectra

Oscillation vs Fine structure in antineutrino spectra

Sonzogni et al. PRC98, 014323 (2018)

The agreement between NEOS and the summation calculation is good.

Summary of molybdate crystals

- Low temperature crystal tests are critical and under preparation.
- We have a good progress toward AMoRE-II crystals.
- Enriched LMO crystals will be grown at CUP and NIIC (Russia).

Final decision of crystal will depend on background and particle identification power.