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motivations

O The gain length of multi-stage HGHG FEL is very sensitive to the slice energy spread.
Microbunching instability must be suppressed to avoid unacceptable growth of the slice

energy spread.
[see E. Allaria, G De Ninno, PRL 99, 014801 (2007); M.Venturini, PRST-AB 10, 104401 (2007)].
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0 The optimization of the bunch length compression scheme (linac + chicanes) is a priority
for preserving the injector beam quality, manipulating the bunching and improving the

FEL gain.
[see S. Di Mitri et al., NIM A 608 (2009) 19 — 27].
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enhanced longitudinal phase mixing

What

O We propose a machine configuration that is more efficient in suppressing the
microbunching instability than the double and even the single compression scheme.

L The proposed scheme can be tuned to arbitrarily redshift the residual instability gain
before entering into the undulator.

0 The feasibility of this scheme and its capability to preserve the beam quality is
demonstrated with 1-D analytical and 3-D particle tracking model.

Ho

|.  Adopt the single compression (BC1).

Il. Add a second chicane (BC2) at higher energy.

lll. Remove the energy chirp between BC1 and BC2 with a proper RF phase.

IV. Use BC2 to dilute the energy and density modulation induced by the microbunching

instability - not to compress the beam (already done in BC1).



single compression (1)
. pros: suppression of the ubi is more efficient than in the two-stage compression because...

1) ..Landau damping is made stronger by a larger R, applied to a bigger relative energy

spread;

2) ...there is not a second chicane to transform the LSC-induced energy modulation into
current modulation.
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single compression (2)

J cons: a shorter bunch is affected by stronger
longitudinal wakefield along a longer path
than in the two-stage compression

- use this wakefield to remove the energy
chirp required by the compression

 cons: shot-to-shot variations of the bunch
length due to initial timing jitter are no
more compensated by the second chicane

= limit the compression factor to meet the
specification for the final current jitter,
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single compression (3)

1) compress at E >200MeV to avoid emittance blow-up by space charge forces
2) limit 65< 2% in BC1 to avoid emittance blow-up by chromatic aberrations

3) compress by a factor <30 to avoid nonlinearities in the longitudinal phase space

example: 800pC compressed at 250MeV by a factor 10 (p, 41,23), final energy is 1.2GeV
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enhanced longitudinal phase mixing
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model [see Z. Huang et al., PRST-AB, 7, 074401 (2004),
M. Borland, APS LS-287, 2000].
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O elegant tracking code: includes 1-D CSR and LSC impedances



analysis & particle tracking
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collective effects

1. longitudinal wakefield upstream of oo

BC2 corrupt the current flatness

downstream of BC2 = correct with
harmonic cavity.
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comments (1)

(

The “EPM” minimizes the density modulation downstream of BC2.

- We expect an even smaller energy modulation induced by LSC in the linac downstream
of BC2, w.r.t. the double and the single compression.

d The “EPM” still seems to preserve the E-z correlation of the beamlets after BC2. In
fact, this structure is used in the ECHO scheme.

- Achromaticity and isochronicity of downstream dispersive lines have to be carefully

designed to avoid a revival of microbunching and emittance blow up.
[preliminary comments in M. Venturini, PRST-AB 10, 104401 (2007)].

[G. Stupakov,
PRL 102,
074801 (2009)]

[S. Di Mitri et al.,
PRST-AB, 13,
010702 (2010)]
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comments (2)

O The “EPM” suppresses the microbunching
wavelength range of interest.

instability gain function over the

- We expect much less heating required to suppress the microbunching instability at

these wavelenghts.

O The “EPM” naturally implies the redshift of the microbunching instability gain

function.

- The same principle has been adopted in the
wavelength output radiation.

[M. Cornacchia
et al., Proc. of
EPAC 2008,
TUPPO3 (2008)]
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summary

Physics, cost and schedule suggest that the one-stage compression is a valid scheme
to achieve a high e-beam quality for moderate compression factors.

= The “enhanced phase mixing” is even more efficient for suppressing the
microbunching instability that is to improve the final e-beam energy and current
distribution.

= During the machine design, have special care of the current flatness, slice emittance
and transport matrix of dispersive lines downstream of BC2.

= The “enhanced phase mixing” can be used, in principle, to properly tune the
bunching at the entrance of the undulators without any additional seeding laser.
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magnetic compression

projected emittance
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NumberQOfOccurences

elegant tracking

M. Borland, PRST-AB 11 030701 (2008)
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single compression

. pros: Landau damping

Exercise: calculate the bunching factor for one compressor only and for a compressor + decompressor scheme,
but leaving the total compression factor fixed in both cases.

/ \ CF=35 Initial density modulation Bunching with Bunching with
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(d cons: bunch length jitter

The bunch length jitter is naturally compensated in the presence of double compression and longitudinal
wakefield [see also P. Emma,
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single compression

. pros: Landau damping is more efficient than in the two-stage compression because:

1) alarger R is used in the presence of a bigger relative energy spread [Z. Huang]

2) there is not a second chicane to transform the LSC-induced energy modulation into
current modulation.

Exercise: calculate the bunching factor for one compressor only and for a compressor +
decompressor scheme, but with the same total compression factor in the two cases.

/ \ CE=3.5 Initial density Bunching with  Bunching with
R. <0 ' modulation BC1-only BC1+DC
%61 0.03% at 10 um 9-10°3 21073
1% at 100 pm 0.146 0.188

N\ cras 0.03% at 100 pm 8107 11.10°

Rss1<0 Rg2>0

* The limiting case is the single compression.
* The analysis shows that the damping depends more from the wavelength than
from the amplitude of the modulation.
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