

Suppression of microbunching instability *with* magnetic bunch length compression in a linac-based free electron laser

S. Di Mitri, M. Cornacchia, S. Spampinati and S. Milton Sincrotrone Trieste (ELETTRA Laboratory)

Proc. of EPAC2008, TUPP03 (2008)

Phys. Rev. ST – AB 13, 010702 (2010)

outline

- 1. motivations
- 2. enhanced longitudinal phase mixing
 - 3. single compression
 - 4. phase mixing
 - 5. collective effects
- 6. comments
- 7. summary

motivations

□ The gain length of multi-stage HGHG FEL is very sensitive to the **slice energy spread**. Microbunching instability must be suppressed to avoid unacceptable growth of the slice energy spread.

[see E. Allaria, G De Ninno, PRL 99, 014801 (2007); M.Venturini, PRST-AB 10, 104401 (2007)].

☐ The optimization of the bunch length compression scheme (linac + chicanes) is a priority for preserving the injector beam quality, manipulating the bunching and improving the FEL gain.

[see S. Di Mitri et al., NIM A **608** (2009) 19 – 27].

enhanced longitudinal phase mixing

<u>What</u>

- □ We propose a machine configuration that is more efficient in suppressing the microbunching instability than the double and even the single compression scheme.
- The proposed scheme can be tuned to arbitrarily redshift the residual instability gain before entering into the undulator.
- □ The feasibility of this scheme and its capability to preserve the beam quality is demonstrated with 1-D analytical and 3-D particle tracking model.

<u>How</u>

- I. Adopt the single compression (BC1).
- II. Add a second chicane (BC2) at higher energy.
- III. Remove the energy chirp between BC1 and BC2 with a proper RF phase.
- IV. Use BC2 to dilute the energy and density modulation induced by the microbunching instability - not to compress the beam (already done in BC1).

single compression (1)

- pros: suppression of the *ubi* is more efficient than in the two-stage compression because...
- ...Landau damping is made stronger by a larger R₅₆ applied to a bigger relative energy spread;
- 2) ...there is not a second chicane to transform the LSC-induced energy modulation into current modulation.

single compression (2)

- cons: a shorter bunch is affected by stronger longitudinal wakefield along a longer path than in the two-stage compression
 - \rightarrow use this wakefield to remove the energy chirp required by the compression

- cons: shot-to-shot variations of the bunch length due to initial timing jitter are no more compensated by the second chicane
 - \rightarrow limit the compression factor to meet the specification for the final current jitter,

$$\frac{\Delta C}{C_0} = -C_0 \frac{\Delta \phi}{\phi_0}$$

single compression (3)

prescriptions:

- 1) compress at $E \ge 200 MeV$ to avoid emittance blow-up by space charge forces
- 2) limit $\sigma_{\delta} \leq$ 2% in BC1 to avoid emittance blow-up by chromatic aberrations
- 3) compress by a factor \leq 30 to avoid nonlinearities in the longitudinal phase space

example: 800pC compressed at 250MeV by a factor 10 ($\rho_{LAM} \cong$ 3), final energy is 1.2GeV

enhanced longitudinal phase mixing

III Workshop on Microbunching Instability, INFN-LNF, March 2010

model

[see Z. Huang et al., PRST-AB, **7**, 074401 (2004), M. Borland, APS LS-287, 2000].

□ 1-D LSC impedance
$$Z(k) = \frac{iZ_0}{\pi k r_b^2} \left[1 - \frac{kr_r}{\gamma} K_1 \left(\frac{kr_b}{\gamma} \right) \right]$$

□ 1-D bunching factor in the presence of linear transport matrix $b(k_f) = \left[b_0(k_i) - ik_f R_{56,1} \frac{\Delta \gamma(k_0)}{\gamma} \right] e^{\frac{-\left(k_f R_{56,1} \frac{\sigma_\gamma}{\gamma}\right)^2}{2}}$

LSC-induced energy modulation
$$\Delta \gamma(k) \approx -\frac{I_0 b(k)}{I_A} \int_0^L \frac{4\pi Z(k,s)}{Z_0} ds$$

□ *elegant* tracking code: includes 1-D CSR and LSC impedances

analysis & particle tracking

collective effects

 longitudinal wakefield upstream of BC2 corrupt the current flatness downstream of BC2 → correct with harmonic cavity.

 CSR in BC2 induces emittance growth → possible limitation for high charge, very short bunches

comments (1)

- □ The "EPM" minimizes the density modulation downstream of BC2.
- → We expect an even smaller energy modulation induced by LSC in the linac downstream of BC2, w.r.t. the double and the single compression.
- □ The "EPM" still seems to preserve the E-z correlation of the beamlets after BC2. In fact, this structure is used in the ECHO scheme.
- → Achromaticity and isochronicity of downstream dispersive lines have to be carefully designed to avoid a revival of microbunching and emittance blow up.
 [preliminary comments in M. Venturini, PRST-AB 10, 104401 (2007)].

comments (2)

- □ The "EPM" suppresses the microbunching instability gain function over the wavelength range of interest.
- → We expect much less heating required to suppress the microbunching instability at these wavelenghts.
- □ The "EPM" naturally implies the redshift of the microbunching instability gain function.
- → The same principle has been adopted in the undulator for the generation of long wavelength output radiation.

III Workshop on Microbunching Instability, INFN-LNF, March 2010

summary

- Physics, cost and schedule suggest that the <u>one-stage compression</u> is a valid scheme to achieve a high e-beam quality for <u>moderate compression factors</u>.
- The "enhanced phase mixing" is even more efficient for suppressing the microbunching instability that is to improve the final e-beam energy and current distribution.
- During the machine design, have special care of the current flatness, slice emittance and transport matrix of <u>dispersive lines downstream of BC2</u>.
- The "enhanced phase mixing" can be used, in principle, to properly tune the bunching at the entrance of the undulators without any additional seeding laser.

acknowledgment

To carry out this work we have started from some works and ideas by Paul Emma (comparison one- vs. two-stage compression), Zhirong Huang (compression at lower energy), Torsten Limberg (stability of the compression factor) and A. Zholents (microbunching in isochronous transfer line).

Thank you for your attention.

magnetic compression

projected emittance

compression factor = 3.5

 $\textit{projected} \ \epsilon\text{-growth}$ minimised by optics matching

slice emittance

- ? 3D CSR forces $(\sigma_r \approx \sigma_z^{2/3} R^{1/3})$
- ? particle cross-over through adjacent slices

elegant tracking

single compression

pros: Landau damping

Exercise: calculate the bunching factor for <u>one compressor only</u> and for a <u>compressor + decompressor</u> scheme, but leaving the total compression factor fixed in both cases.

CF=3.5	Initial density modulation	Bunching with BC1-only	Bunching with BC1+DC
R _{56,1} < 0	0.03% at 10 µm	9·10 ⁻³	2.10-3
\frown	1% at 100 µm	0.146	0.188
CF=3.5	0.03% at 100 µm	8·10 ⁻³	11.10-3
R _{56.1} < 0 R _{56.2} > 0			

but: compression factor limited by beam quality

CF=10, 800pC, 1.2GeV.

Current spikes and nonlinear energy chirp not well controlled for higher compression factors

cons: bunch length jitter

The bunch length jitter is naturally compensated in the presence of double compression and longitudinal wakefield [see also P. Emma,

III Workshop on Microbunching Instability, INFN-LNF, March 2010

single compression

- *pros:* Landau damping is more efficient than in the two-stage compression because:
- 1) a larger R₅₆ is used in the presence of a bigger relative energy spread [Z. Huang]
- 2) there is not a second chicane to transform the LSC-induced energy modulation into current modulation.

Exercise: calculate the bunching factor for <u>one compressor only</u> and for a <u>compressor +</u> <u>decompressor</u> scheme, but with the *same* total compression factor in the two cases.

CF=3.5	Initial density modulation	Bunching with BC1-only	Bunching with BC1+DC
< 0	0.03% at 10 μm	9.10-3	2.10-3
_	1% at 100 µm	0.146	0.188
\sim CF=3.5	0.03% at 100 µm	8·10 ⁻³	11.10-3
< 0 R _{56,2} > 0			

- The limiting case is the single compression.
- The analysis shows that the damping depends more from the wavelength than from the amplitude of the modulation.

 $R_{56,1}$

 $R_{56.1}$