

LCLS trickle heating studies

Z. Huang for the LCLS commissioning team

Introduction

- Anomalous heating at low laser energy level was observed almost right after the heater was turned on
- We didn't understand it for a long time (tried to blame CSR in the spectrometer dipole but calculations show a very small CSR effect)
- Simulations illustrate complicated 4D (x, x', δ , z) phase space evolution after LH chicane
- A 3D Longitudinal space charge (LSC) theory was developed to explain the observed effect

Zhirong Huang zrh@slac.stanford.edu

25

20

theory (laser pulse fwhm ~ 16 ps

15

Laser heater energy (µJ)

5

10

LCIS

Laser Modulation Hidden in 4D Phase Space

Laser heater at 0.5 μ J (Elegant simulation by Y. Ding)

Modulation Recovered in Real Space

Longitudinal Space Charge (LSC)

Consider a beam as shown

tilt angle
$$R = \Delta z/\Delta x$$
,

R is related to transfer matrix

- When $\sigma_x R > \hat{\pi}$, longitudinal density modulation is suppressed strongly
- In a 1D approach (as used in *Elegant*), longitudinal modulation multiply by 1D LSC impedance to compute energy modulation

$$E_k^{1D} = a_0 \frac{-ei}{2\pi\epsilon_0 k_L \sigma_x^2} \exp\left(-\frac{k_L^2 R^2 \sigma_x^2}{2}\right)$$

Beam clearly modulated for tilted microbunching in 3D density

6

FCIS

LSC for a beam with tilted μ bunching

Longitudinal space charge field

$$E_z(x,y,z) = \frac{e}{4\pi\epsilon_0} \int dx_1 dy_1 dz_1 \frac{\rho(x_1,y_1,z_1)\gamma(z-z_1)}{[(x-x_1)^2+(y-y_1)^2+\gamma^2(z-z_1)^2]^{3/2}}$$

$$\rho(x, y, z) = \frac{2a_0}{2\pi\sigma_x^2} \cos[k_L(z - Rx)] \exp\left(-\frac{x^2 + y^2}{2\sigma_x^2}\right)$$

■ Fourier transforming on-axis $E_z(x=y=0)$, we have

$$E_k = a_0 \frac{-eik_L}{2\pi\epsilon_0 \gamma^2} \int \frac{rdr}{2\pi\sigma_x^2} \int_0^{2\pi} d\phi \exp\left(-\frac{r^2}{2\sigma_x^2}\right) e^{-ik_L Rr \sin\phi} K_0\left(\frac{kr}{\gamma}\right)$$

Introduce scaled parameters $\xi = k_L r/\gamma$ and $\xi_\sigma = k_L \sigma_x/\gamma$

$$E_k = a_0 \frac{-eik_L}{2\pi\epsilon_0 \gamma^2} \int \frac{\xi d\xi}{\xi_\sigma^2} \exp\left(-\frac{\xi^2}{2\xi_\sigma^2}\right) J_0(\gamma R\xi) K_0(\xi)$$

3D Limit

• When beam size σ_x is much larger than γ_{f} , LSC field is

$$E_k = a_0 \frac{-ei}{2\pi\epsilon_0 k_L \sigma_x^2} \frac{1}{1 + \gamma^2 R^2}$$

- LSC depends weakly on γR when $R < 1/\gamma$
 - → Tilted microbunching does not suppress LSC exponentially.
- A similar result for LSC induced microbunching is derived in this regime to study COTR (D. Ratner, A. Chao, Z. Huang, FEL08)
- 1D approach underestimates LSC by a large factor

$$\frac{E_k}{E_k^{1D}} = \frac{e^{k^2 R^2 \sigma_x^2 / 2}}{1 + \gamma^2 R^2}$$

 $\frac{e^{k^2R^2\sigma_x^2/2}}{1+\gamma^2R^2}$ Take λ_L =758 nm, γ =264, $\sigma_{\rm x}$ =60 μ m, γR ~2, 1D underestimates LSC by a factor ~250!

Now take into account beam optics downstream of heater

LH chicane optics

At the end of LH chicane, longitudinal position z

$$z = z_0 + R_{56} \left[\delta_0 + \delta_m \sin(k_L z_0) \right] + R_{52} x_0'$$

initial energy spread laser-induced E-modulation x'-z correlation

Relative z position doesn't change after chicane, but x & x' do

$$x = R_{11}x_0 + R_{12}x'_0,$$

$$x' = R_{21}x_0 + R_{22}x'_0.$$

- After some phase advance, x'-z → x-z.
- If beam size is small there, strong LSC field is generated to energy-modulate the beam
- Sensitive to current, emittance, and focusing optics

Integrate LSC over beamline

- Assume $k\sigma_x/\gamma >>1$ (mostly OK) and equal x/y beam sizes
- Integrating LSC effect from LH to BXS with proper optics

$$\delta_{LSC} = \int ds \frac{eE_z(k_0)}{\gamma mc^2} = \frac{2i}{k_0 \gamma} \frac{I_0}{I_A} J_1(k_0 R_{56} \delta_L) \exp\left(-\frac{k_0^2 R_{56}^2 \sigma_{\delta 0}^2}{2}\right) \times \int ds \exp\left(-\frac{k_0^2 \eta_c^2 R_{11}^2 \varepsilon}{2\beta}\right) \frac{1}{\sigma_x^2 (1 + \gamma^2 R^2)}$$

Longitudinal bunching factor dispersion in LH chicane w/o transverse correlation

Comparison with measurements

Add LSC-induced E-spread to laser-induced E-spread

$$\sigma_{\delta_f} = \sqrt{\sigma_{\delta 0}^2 + \left(\frac{\sigma_{\Delta E}}{\gamma_0 m c^2}\right)^2 + 2|\delta_{LSC}|^2}$$

To trickle or not to trickle

- In a few shifts we didn't observe trickle heating (suspect that transverse optics was changed by the matching program)
- Change only 2 quads after LH, with some optics mismatch downstream of LH chicane

No trickle heating by tweaking optics

In this setup, suppression of microbunching due to Gaussian angular spread is more effective

- LSC effect is too small with this optics to have trickle heating
- May be a viable way for the LCLS to get rid of trickle heating

Laser heater for FLASH?

Laser beam from photoinjector laser

No dispersion in the undulator: no tilt of energy-chirped beam

Does this scheme avoid trickle heating? Safe smearing through BC2 - but what happens inside?

In the first dipole of BC2:

$$R_{51} = \theta$$

$$R_{52} = \frac{R\theta^2}{2}$$

$$R_{56} = \frac{R\theta^3}{6}$$

Courtesy E. Schneidmiller

Laser heater for FLASH? (cont'd)

In the first dipole of BC2: coherent density modulations may appear due to R_{56} . For laser induced energy modulations about 10 keV the required R_{56} (for strong density modulations) is on the order of 1 mm. For R = 1.6 m this corresponds to the bending angle 0.15 (middle of the dipole). At this position R_{51} = 0.15, R_{52} = 2 cm. For emittance 1 mm mrad and beta about 10 m:

$$\sigma_x R_{51} \approx 30 \, \mu m$$
 $\sigma_{x'} R_{52} \approx 0.4 \, \mu m$

to be compared with $\lambda/(2\pi) \approx 0.08 \mu m$ for green light.

The tilt parameter $(\gamma\theta)^2=(\gamma R_{51})^2\approx 10^3$ for "tilted LSC" (not applicable in bends CSR is strongly suppressed due to transverse size $\sigma_x >> (\lambda/2\pi)^{2/3}R^{1/3}$ and large tilt $\theta >> (\lambda/2\pi R)^{1/3}$

 R_{51} and R_{52} quickly increase along the compressor and smear modulations through the whole compressor, except very end – but there we have strong (and irreversible!) smearing due to R_{56} = 20 cm.

No self-heating is expected - to be checked with codes like CSRtrack

Summary

- Anomalous "trickle" heating is explained by a 3D LSC model.
- Trickle heating does not affect LCLS operation but may have implications to other laser heater designs as well as lasermanipulations of high-brightness beams.
- Low charge (20pC) experience: heater off seems to be best (or just as good).
- Simulations suggest a small amount of heating (~5 keV) optimizes low-charge performance (near full compression).
- We may have to get rid of trickle heating in order to control the slice energy spread at this small level!