Microbunching at FLASH – Measurement of Coherent Radiation from 350 nm to 23 um.

Stephan Wesch Christopher Behrens Bernhard Schmidt

Deutsches Elektronen-Synchrotron, Hamburg

Workshop on the Microbunching Instability III - Frascati

FLASH - Overview

Status 2009 - before shutdown

Inspection of incoherent and coherent transition radiation:

- deflection of single bunch onto off-axis screens (distance CTR-TDS port: \sim 2 m)
- CTR port leads to external lab via evacuated beamline ($\sim 20\,\mathrm{m}$)
- TDS port leads to optical table inside tunnel $(\sim 1 \text{ m})$
- position in front of dogleg (→ not entirely compressed bunch)

First Microbunching observations

Transverse deflecting device

screen image of streaked electron bunch

Uncompressed bunch: (nearly oncrest phases)

- → ripples on longitudinal charge image
- → strong fluctuation from shot to shot

courtesy Holger Schlarb

First Microbunching observations II

2 stage single shot spectrometer

Phasescan of ACC1:

- → leading spike generates coherent signal over full wavelength range for \$\varphi_{\text{ACCL}} < -7^{\circ}\$</p>
- ightarrow CTR intensity below $\lambda \leq 13~\mu m$ is nearly indepenent of phase changes
- indication of microstructures inside electron bunch
- triggered intensive studies at smaller wavelengths

Experimental Equipment

Used spectrometers

regime	spectrometer	detector	range	location	sensitive to incoh. level
VIS	commercial SP2150 $g = 12001 \cdot \text{mm}^{-1}$	ICCD (S20)	$0.3 - 0.85 \ \mu m$	tunnel	YES
NIR	commercial SP2150 $g = 3001 \cdot \text{mm}^{-1}$	CCD (InGaAs)	0.8 — 1.6 μm	lab	NO
FIR	2 stage single shot $g = \{240, 150\} \cdot \text{mm}^{-1}$ $g = \{90, 54\} \cdot \text{mm}^{-1}$	pyro (<i>LiTaO</i> ₃)	3.4 — 23 μm	lab	NO

Experimental Equipment II

Installations

setup of optical table near TDS viewport

2 stage spectrometer in external labortory

Measurement

Raw data examples

VIS spectra at $\lambda_c \in \{350, 425, 500, 550, 600, 650\}$ nm

NIR spectra at $\lambda_c \in \{0.9, 1.1, 1.3, 1.5\}~\mu\text{m}$

Analysis procedure

VIS + NIR regime

Relative adjustment in VIS:

- camera QE(λ)
- camera QE(x, y)
- grating efficiency (simulation with PCGrate6.1 failed)
- response function of the whole system measured with calib, source!

response of grating and camera in VIS regime

Relative adjustment in NIR:

- line array $QE(\lambda)$
- grating efficiency

(simulation delivers pausible results)

Data analysis

VIS + NIR spectra

- FEL mode
 - $r_{56,BC2} = -185 \text{ mm} / r_{56,BC3} = -55 \text{ mm}$
- oncrest phases

$$r_{56,BC2} = -185 \text{ mm} / r_{56,BC3} = -55 \text{ mm}$$

oncrest phases

$$r_{56 \text{ BC}2} = -130 \text{ mm} / r_{56 \text{ BC}3} = -55 \text{ mm}$$

oncrest phases

$$r_{56,BC2} = -130 \text{ mm} / r_{56,BC3} = -20 \text{ mm}$$

- -- FEL mode fit
- \rightarrow FEL mode in VIS regime follows λ^{-2} + cut-off (optics)
- extension to longer wavelength defines incoherent level in NIR regime
- → NIR spectra adjusted by <u>ONE</u> factor to VIS spectra

Data analysis II

VIS + NIR gain

FEL mode

$$r_{56,BC2} = -185 \text{ mm} / r_{56,BC3} = -55 \text{ mm}$$

oncrest phases

$$r_{56,BC2} = -185 \text{ mm} / r_{56,BC3} = -55 \text{ mm}$$

oncrest phases

$$r_{56,BC2} = -130 \text{ mm} / r_{56,BC3} = -55 \text{ mm}$$

oncrest phases

$$r_{56,BC2} = -130 \text{ mm} / r_{56,BC3} = -20 \text{ mm}$$

- \rightarrow gain(λ) $\equiv I_{\text{total}}(\lambda) / I_{\text{incoh.}}(\lambda)$
- exponential grow of gain (over 3 orders of magnitude)!
- → different influence of BC2 and BC3 on intensity
- → for smallest r₅₆'s COTR exeeds into the ultraviolet

Analysis procedure II

FIR regime

Absolute adjustment:

- polarizer efficiency
- grating efficiency (simulations with PCGrate6.1 and GSolver4.2 agree)
- response of pyroelectric elements (calibration at FELIX)

response of detector + electronics

Gain calculation:

- Calculation of emitted TR through beamline to the external lab
 (THzTransport: flattop bunch, diamond window, finite mirror size, gold coating of mirrors)
- → measured spectra normalized to simulated spectra for incoherent emission

Data analysis III

FIR spectra

FEL mode CTR spectrum

oncrest CTR spectrum

Data analysis IV

Gain level

combination of data sets:

- → same compressor seetings
 - mixing of microbunching signal and gain signature of compressed bunch (no separation)
 - pure microbunching signal due to few ps long uncompressed bunch
 - maximum gain of ~ 100.000
 - $\lambda_{opt} \sim 9 \, \mu \text{m}$
 - good agreement between different analysis procedures

Fluctuations

- fluctuation strength δ is given by number of modes m: $\delta^2 = 1/m$ $(m \gg 1)$
- fluctuation is discribed by Γ distribution with m modes

$$\textit{m} = \sqrt{1 + 4\,\sigma_\omega^2\sigma_i^2}\,\cdot\,\left(1 + 4\,k^2\sigma_\theta^2\sigma_\perp^2\right) \quad \text{Sannibale et al., PRST032801(2009)}$$

FEL mode (550 nm**):**

- fluctuation described by Γ dist. with $m\sim 80$
- rough estimation: $\sigma_{\omega} = \text{spec.res.},$ $\sigma_{t} = 4 \, \text{ps}, \, \sigma_{\theta} = 1/\gamma, \, \sigma_{\perp} = 150 \, \mu \text{m}$
- $\rightarrow m = 70$

Oncrest mode (1300 nm):

- fluctuation described by Γ dist. with m=15
- number is only given by longitudinal term, transverse mode has to be 1
- → bunch seems to be fully coherent in transverse plane!

Results

- transition radiation spectra from $350\,\mathrm{nm}$ to $23\,\mu\mathrm{m}$ for different machine settings were measured
- good understanding of used devices enables reasonable connection of gain spectra
- fluctuation analysis show fully transverse coherence
- data can be used to test analytical and numerical microbunching models

Outlook

Questions:

- Is the linearization of longitudinal phase space a problem for FLASH?
- Is it possible to model the instability quantitatively?
- What are the critical machine parameters to distinguish between models?

Closing

OTR screen images with InGaAs camera and 1200 nm bandpass filter ($\sigma = 10$ nm)