MICROBUNCHING INSTABILITY STUDIES FOR MAGNETIC AND HYBRID COMPRESSION SCHEMES.

C. Vaccarezza, Chiadroni E., Ferrario M., Giannessi L., Migliorati M., Ronsivalle C., Venturini M.

Outline

- The SPARX linac layout:
 - 2 compression schemes to analyze for LE & HE
- The input beams:
 - improved statistics
- Tracking results w LH
- Genesis simulation results.
- Conclusions

SPARX schematic layout

Energy	(GeV)		Ε	1÷1.5	2.4
Peak current	(kA)		l _{pk}	1	2.5
Normalized transverse emi	ttance <i>slice</i>	(µm)	٤ _n	1	1
Correlated energy spread	(%)		σ_{δ}	0.1	0.1
Radiation wavelength	(nm)		λ _r	40÷3	3÷0.6

Parameter list

1/2

Reference beam parameters						
	Low energy beam			High energy beam		
Set name	LE-A	LE-B	LE-C	HE-A	HE-B	HE-C
Beam energy (GeV)	0.96 - 1.5		1.92 - 2.64			
Peak Current (kA)	>1	>0.6	>1	>2.3	>1.0	>0.3
Energy spread (slice)	<3 x10 ⁻⁴			<2 x10 ⁻⁴		
Emitt. (slice, mm-mrad)	<1.1	<0.7	<1.1	<1	<0.5	<0.1
Twiss β (m)	~6		~10			

Low energy beam :

- WP1 = Velocity Bunching + BC2/BC3
- WP2 = BC1 + BC2 / BC3

Parameter list

U1

VUV-EUV Undulator parameters

Period	3.4 cm
Undulator length	2.278m
No. of Periods	67
Gap (min/max)	8.1 / 25 mm
K max	3.275
Remanent field (effective)	1.2 T
Blocks per period	4

EUV-Soft X-ray Undulators parameters 2/2

UM1 – Undulator sequence (4 segments) Period 4cm **Undulator length** 2.278m No. of Periods 55 Gap (min/max) 8.1 / 25 mm 3.27 K max Remanent field (effective) 1.21 T UM2 – Undulator sequence (12 segments) Period 2.8cm Undulator length 2.156m No. of Periods 77 8.1 / 25 mm Gap (min/max) 2.3 K max Remanent field (effective) 1.21 T UM3 - Undulator sequence (4 segments) Period 2.2cm Undulator length 2.20m No. of Periods 100 Gap (min/max) 6.1 / 25 mm K max 1.9 Remanent field (effective) 1.21 T

U2

Laser heater parameter list

electron Energy	160 ÷220 MeV
transverse rms beam size	200 µm
undulator period	0.05 m
undulator parameter	3.00÷2.13
undulator length	0.50 m
laser wavelenght	800 nm
laser rms spot size	200 µm
laser peak power	1÷25 MW
rms local energy spread	50÷400keV

The input beams:

BEAM 1 (WP1):

Sparc w RF compression: "RFc"

- □ I ≈ 350 A
- $\Box \quad \epsilon_{n x,y} \leq 1 \text{ mm mrad}$
- $\Box \ \sigma_z \approx 280 \ \mu m$
- $\Box \sigma_{\delta} \approx 1\%$
- \Box E₀ \approx 163 MeV
- \square Q = 1nC
- No Xband

BEAM 2 (WP2):

Sparc basic: "nc"

- □ I ≈ 100 A
- $\Box \epsilon_{nx,y} \le 1 \mu rad$
- $\Box ~\sigma_z \approx 900~\mu m$
- $\Box \ \sigma_{\delta} \approx 0.15 \%$
- \Box E₀ \approx 217 MeV
- \square Q = 1nC
- Xband upstream BC1

<u>Superimposed modulation at cathode:</u>

$$\lambda = 150 \ \mu$$
, Amp. =10 %

Input beam Phase Space & slice features

nc

Input beam Phase Space & slice features

Rfc

nc

Xband on-off with vb

At 1.5GeV DL1 dogleg end:

Rfc

nc LH OFF

At 1.5GeV DL1 dogleg end:

LH 25 MW

Rfc

nc LH 10MW

At 1.5GeV DL1 dogleg end:

VUV 10 nm – 1 kA Non-compressed

VUV 10 nm - 1 kA RF compressed

At 2.4 GeV DL3 dogleg end:

At 2.4 GeV DL3 dogleg end:

Sporx_2_4GeY_nc_mod_LHON_elice_new_B_X

Conclusions

- Two WP, i.e. two compression schemes, for the SPARX FEL have been analyzed from the point of view of sensitivity to the microbunching instability effect.
- The case described is somewhat extreme and also the LH effect has been kept on the edge of the SASE Saturation trying to enhance the wp intrinsic features.
- The "RFc" case allows to avoid the X-band linearization prior the compression, but the induced instability looks harder to master at low energies comparing with the "nc" case.
- At higher energies the effect is less severe for the two schemes
- What next:
 - The noise modulation that comes out downstream the photoinjector in the RFc case would probably require more effort in carrying out the numerical simulation
 - Significant contribution can come from the comparison with the experimental results obtained and future for the two compression schemes respectively.