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Why bother?

• Velocity bunching represents a possible and interesting complement  to magnetic 
compression (energy chirped beam through a chicane)

– ++ Avoids CSR effects that may plague magnetic compression 

– - - Enhances SC effects [beam manipulation at low energy] 

• Proof of principle of RF compression established. Recent experiments at SPARC 
suggest that it can be done w/o undermining emittance compensation

• Bunch compression introduces potential for microbunching

• In principle both RF and Magnetic compression could support microbunching

– The basic ingredients are present in both cases: collective forces + dispersion (i.e. energy 
dependent time of flight)

– One could hope that RF compression, done at lower energy,  should be more benign 
(plasma oscillations to wipe out density modulations).  

• Approach: develop a linear theory along the lines of the theory developed for 
microbunching instability through a chicane  

– A number of approximations have to be made, which may be questionable

– Goal is to have a tool for comparative studies and understanding of basic scaling                 
(if not a tool for extracting accurate absolute answers)
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Outline of talk

• Motivations

• Basics on velocity bunching 

• Model of dynamics adopted for linear theory

• Validation of model against macroparticle simulations

• RF vs. Magnetic Compression (preliminary)
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How RF compression works

• Compression in TW structure (slightly different from compression through RF cavity 
buncher).

• Exploits slow motion of mildly relativistic electrons in RF bucket and establishment     
of vz/z correlation
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RF compression demonstrated experimentally
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-- Parmela simulations

SPARC

Ferrario et al. 

Phys. Rev. Lett. 104, 054801 (2010) 
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Linear approximation* of single-particle 

dynamics in RF structure

• Determine orbit for reference orbit by solving:

• Linearize equations in terms of the variable                           expressing 

deviation from the reference orbit about the reference orbit. We use position 

Dz~-cbDt instead of time (and here assume b~1). 

• The transfer map M yielding                                       obeys                   with:             
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*Caveat: In this talk “linear” is used with two different meanings:
i) Linear with respect to RF dynamics
ii) Linear (in current) with respect to collective effects 
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In some cases one can write manageable 

approx. analytical expressions for  linear motion

• Formulas apply for zero-

phase crossing, moderate 

compression

• For more general case solve 

for M numerically
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Entries of transfer matrix, initial chirp,

determine compression factor 

Initial chirp

This is ~R56
=1 for

magnetic chicane

drift

frf 2.8GHz

0 -2 deg

E0 5.6MeV

Ez 25 MeV/m

~SPARC parms

TW structure
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Linear approx. of single-particle dynamics              

is good only for low/moderate compression
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Space charge is treated using 

1D LSC impedance model

• For the space-charge impedance assume 1D model obtained from taking 
average of Ez electric field generated by beam with circular cross-section of 
radius rb and uniform transverse density.

– Somewhat better than taking Z corresponding to the on-axis electric field of same 
beam density

– To some degree model can be used to represent the impedance from beam with 
a more general transverse density profile by adjusting rb to some effective value.

• Cons: We lose 3D effects that at low energy can be important (particularly 
at short wavelengths). 

– Model gets better as beam is accelerated along structure

– Comparison with macroparticle simulations (see later slides) ~OK.

– Model could be improved by making assumption of laminar beam and retaining    
r-dependence of Ez field (see J. Wu et al., PRST-AB  11 040701, 2008).

• Pros: Reduced dimensionality makes model more handy. 
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Linear theory for gain function

• We are interested in determining the gain function initial density perturbations with 
wavelength much smaller than bunch length 

• Adopt the coasting beam approximation (gauss energy distribution) for unperturbed 
beam density

– Neglect  space-charge induced  chirping

– A theory applicable to bunched beam could be developed 

• 2D Beam density in phase space in the form  f=f0+f1

• Assume initial perturbation consisting of a sinusoidal density perturbation with 
wavenumber k0

• Collective effects expressed in terms of Impedance 

• Solve the linearized Vlasov equation. Determine the instability gainfunction i.e. ratio 
between relative amplitudes of density perturbation at exit and entry of RF 
compresson  
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Expression of gain obeys integral equation

formally identical to that of magnetic compressor  

• FT of perturbation at s>0

• Integral Eq. for bunching function

• Kernel of integral equation

• In comparison with bunching in chicane: 

– Longitudinal dynamics is decoupled from transverse (1D theory suffices); a priori 
knowledge of transverse beam size along s is assumed (for determining 
impedance) 

– Compression factor has slightly different analytical form  
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In the absence of RF forces we recover

dynamics of long. plasma oscillations 

• Amplitude of plasma oscillations for cold 

beams
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Aside: gain along a magnetic bunch compressor;

Theory vs. Macroparticle simulations 

• Application of linear theory to microbunching through magnetic 

compressors has generally been satisfactory 

Check impedance model:
Evolution of energy modulation

Seeded by sinusoidal charge mod

Cold beam with circular cross-section

along drift

Gain function through L1 +chicane

(LSC + CSR)

39m+11m section

E=40 to 240 MeV

R56=12.3cm

I0=73A (initial peak current)

Compression ~ 14
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Examples of gain curve through RF compressor

gain= (initial rel. amplitude)/(initial rel. amplitude)

Crf=6.35

Crf=2.61

frf 2.8GHz

I0 50 A

E0 5.6MeV

Ez 25 MeV/m

0.6 m drift

+3 m structure
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Validating 1D theory against macroparticle 

Simulations 

NUMERICAL MODEL: the beam

• Used code: TSTEP (a derivative of PARMELA code), a serial code 
limited to 10M of max. number of macro-particles

• Beam parameters: Q=1 nC, flat temporal distribution (10° at 2856 
MHz), uniform transverse distribution,Energy=5.6 MeV,no energy 
spread

• Range of initial modulation wavelengths λm:  50-300 µm

• Initial modulation amplitude: 10%

• Max. number of macroparticles used in simulations: 4,5M

• Radial mesh automatical adjusted by the code, longitudinal mesh 
length Dzsc=5 mm, Nz=1200 or 2400 depending on the bunch 
compression

• Computation of microbunching gain on beam core to minimize edge 
effects
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Macroparticle simulations 

NUMERICAL MODEL: the beamline

• Beam line (RF gun not included): 

drift+RF compressor (3m TW linac, 

E=25 MV/m, no emittance 

compensation solenoid)

• Choice of the length of the leading 

drift: equal to the distance in which 

the first minimum of density 

modulation occours with a 

complete transfer from density to 

energy modulation.
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Macroparticle simulations 

COMPUTED MICROBUNCHING GAIN  vs. Z IN THE DRIFT
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Macroparticle simulations 

MICROBUNCHING GAIN VS Z IN THE DRIFT+RFC LINE: 

SPACE CHARGE EFFECT (GAIN DAMPING)
phase=0°
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Macroparticle simulations: comparison with the 

theoretical model 
The computed radius variation 

has been incorporated in the 

theoretical model as 

rb(z)=aσx(z)   

with a=1.95-0.001(m) and 

σx=computed rms envelope

This condition gives the best 

agreement model-simulations
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Macroparticle simulations: comparison with the 

theoretical model 

phase=-82°
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Macroparticle simulations: comparison with the 

theoretical model 

GAIN VS Z FOR DIFFERENT INITIAL MODULATION 

WAVELENGTHS AND (RFC)=-82° (bunch compression~2)

λm=50 µm λm=75 µm

λm=100 µm

λm=150 µm
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Macroparticle simulations: comparison with the 

theoretical model 

GAIN VS Z FOR TWO DIFFERENT LEVELS OF COMPRESSION

modulation wavelength=200 um
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What is compared 

is the amplitude of 

the red curve 

(sinusoidal fit)

ENERGY MODULATION

Energy-phase 

Selected window

Correlation subtracted

Main difference respect to 

the theoretical model: the 

growth of the uncorrelated

energy spread

initial modulation wavelength=75 um, RFC phase= -82°

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400

z(cm)

D
E

(K
e

V
)

THEORY

TSTEP

Macroparticle simulations: comparison with the 

theoretical model 
z=67 cm



25

RF compression at low energy followed

by magnetic compression

• In a conceivable practical scenario RF compression is to be 

supplemented by magnetic compression (one, perhaps more 

chicanes)

• Is there an optimal may to partition compression between RF and 

magnetic compressors in order to minimize the gain for the 

microbunching instability?
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Model for analysis 

• Assume initial cold beam. RF compression done in first  RF structure (3m).  
Second RF structure operated on crest. Third SR structure accelerates to 
233MeV

• Laser heater introduces finite energy spread

• Fixed chicane with R56=2.6cm (inspired to FERMI first BC); ex=10-6 m

• Assume uniform transverse beam size throughout 

• Fix initial peak current (50A) and overall compression C=CRFCBC=22. 

• Vary RF compression factor (adjust chirp “by hand” to obtain CBC=C/CRF),  
monitor overall gain function (and its maximum)
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Large RF compression generally boosts 

microbunching

• Local minimum appears for moderate 
CRF

• Minumum (zero) of gain through RF 
compressor  ~overlaps to peak of gain 
for magnetic compressor. 

• Profile of gain function through  RF 
compressor  depends on length of trailing  
dirft (next slide)

CRF=2.6

sE=3keV

RF compressor onlyRF compressor only

magnetic compress. onlymagnetic compress. only

RF+magnetic compressRF+magnetic compress

Peak of overall gain function

vs. RF compression factor 
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Overall gain sensitive to drift trailing RF 

compressor 

• Initial perturbations considered for this study have all the same phase (purely 

density perturbations).

• Phase of perturbation at entrance of RF compressor is affected by length of 

trailing drift  

Ldrift=1.2m

Ldrift=0.9m

Ldrift=0.6m
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Conclusions

• As velocity bunching is being seriously considered for beam compression it is 
worhtwhile to investigate how it may affect the evolution of small beam perturbations.  

• We have presented a “double-linear” theory for the evolution of small sinusoidal 
perturbations

– Linear in terms of rf forces (limits applicability to low/moredate compression) 

– Linear in terms of amplitude of perturbations 

• Comparison against macroparticle simulations not unsatisfactory. However: 

– It was limited to relatively long wavelengths, low compression 

– Good agreement obtained by adjusting empirically the ratio betwen parameter rb 

appearing in theory and actual transverse rms sizes from simulations (hint that 
3D effects are creeping in).

– Model misses development of z/r correlated energy spread

• We used the theory to analyze gain through model of  RF compressor + magnetic 
compressor with constant overall compression factor.  Tentative (and preliminary) 
results:

– Excessive RF compression is unfavorable

– Low  RF compression may not significantly enhance instability

– Outcome sensitive to details of initial conditions (phase) of noise
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Energy at exit of RF compressor 

vs.  RF compression factor


