# **The MAX IV Injector**

#### **Sara Thorin**

Microbunch instability workshop, 24-26 of March, Frascati





We are moving!

#### MAX IV



2009.04.29 – Funded 2010.02.26 – Building contract 2012 – First e⁻ in injector

SWECO 🛣

### MAX IV



# Different modes for the injector



#### Injection and top up for the two rings

- 1.5 GeV and 3 GeV
- 1 nC charge
- ~1 ns bunch length
- ~ 4 mm rad emittance

#### High brightness injector for

- SPF different pulses
  - 100 pC
  - 100 fs clean pulses
  - vary pulse length/emittance
- FEL (phase two)
  - shorter pulses
  - lower emittance
  - few fs, few pC, very low emittance

## MAX IV - Injector



# Photo cathode guns

#### High brightness gun

- copper cathode
- •100 pC
- 5 ps
- 0.4 mm mrad



#### **Ring injection gun**

- BaO cathode
- •1 nC
- •~1 ns
- ~4 mm mrad



#### In collaboration with Elettra

M. Trovò et al., EPAC 08, MOPC080.

### done in double achromats



#### Linearisation with sextupoles

- economy
- reliability
- simplicity

### done in double achromats



#### Linearisation with sextupoles

- economy
- reliability
- simplicity

#### **Compression in double achromats**

- positive R56 (fixed)
- compression varied with RF phase
- utilise the natural T566 for linearisation
- "weak" sextupoles for tuning linearisation
- symmetry keeps the second order energy dependent matrix elements small







| Input beam                       |        |
|----------------------------------|--------|
| Energy (MeV)                     | 100    |
| RMS bunch length (ps)            | 3      |
| Projected emittance (mm mrad)    | 0.4    |
| Charge (pC)                      | 100    |
|                                  |        |
| After BC1                        |        |
| Energy (MeV)                     | 260    |
| RMS bunch length (fs)            | 163    |
| Projected emittance (mm mrad)    | 0.408  |
| Projected rms energy spread dE/E | 0.7 %  |
| linac phase (deg)                | 34.5   |
|                                  |        |
| After BC2 (final bunch)          |        |
| Energy (MeV)                     | 2850   |
| RMS bunch length (fs)            | 31     |
| Projected emittance (mm mrad)    | 0.997  |
| Projected rms energy spread dE/E | 0.19 % |
| linac phase (deg)                | 18     |
|                                  |        |



#### The current MAX-lab injector





# **FEL test facility**





MAX-lab Francesca Curbis\*, Nino Cutic, Filip Lindau, Sara Thorin and Sverker Werin HZB/BESSY Johannes Bahrdt and Karsten Holldack Atomic Physics Christian Erny and Erik Mansten

\*) Now at FLASH DESY



#### Seeded CHG test facility



## Gun



Thermionic gun BaO cathode Ti:Sapphire 263 nm Jitter < 300 fs Pulse length 10 ps



R56  $\approx$  5 cm, fixed Ideal phase for compression  $\approx$  30 Compression after full acceleration => Optimized acceleration phase  $\approx$  8°

## **Optical klystron**



### **Optical klystron**



# Compression and microbunch measurments - THz



•THz radiation from the dump magnet was measured

•When the bunches become shorter, or microbunching stronger, THz radiation increases

### Spatial and temporal overlap



#### **FEL test facility**

380 MeV

CHG @ (263), 133, 88, 66, 53 nm

Seeded HG (Seed  $\lambda$ =263 nm)



#### Results — fundamental 263 nm





#### Results – 2nd harmonic 133 nm





#### Results – 3rd harmonic 88 nm



#### Results – 4th harmonic 66 nm





# Thank you for your attention