TMDs at JLab: present and future

Pavia, 19-20 December 2018

TRANSVERSITY and TENSOR CHARGE

Marco Radici INFN - Pavia

why transversity (PDF / TMD) ?

1st Mellin moment of transversity \Rightarrow tensor "charge"

$$\delta q \equiv g_T^q = \int_0^1 dx \; \left[h_1^q(x, Q^2) - h_1^{\bar{q}}(x, Q^2) \right]$$

tensor charge connected to tensor operator $\langle p, S_p | \bar{q} \sigma^{\mu\nu} q | p, S_p \rangle = \left(P^{\mu} S_p^{\nu} - P^{\nu} S_p^{\mu} \right) g_T^q (Q^2)$ $= \left(P^{\mu} S_p^{\nu} - P^{\nu} S_p^{\mu} \right) \int dx h_1^{q-\bar{q}}(x, Q^2)$

tensor operator not accessible in tree-level Standard Model low-energy footprint of new physics at higher scales ?

why di-hadron mechanism ?

collinear framework

- simple product of PDF and IFF

Ex.: SIDIS
$$A_{\text{SIDIS}}^{\sin(\phi_R + \phi_S)}(x, z, M_h^2) \sim -\frac{\sum_q e_q^2 h_1^q(x) \frac{|\mathbf{R}_T|}{M_h} H_{1,q}^{\triangleleft}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) D_{1,q}(z, M_h^2)}$$

x-dependence of AsiDis all in PDF

- factorization theorems for all hard processes \rightarrow universality of h₁ H₁ \triangleleft mechanism

available experimental data

factorization theorems for all hard processes

data used in the global fit

Airapetian et al., JHEP **0806** (08) 017 Adolph et al., P.L. **B713** (12) Braun et al., E.P.J. Web Conf. **85** (15)

Vossen et al., P.R.L. 107 (11) 072004

run 2006 (s=200)

Adamczyk et al. (STAR), P.R.L. **115** (2015) 242501

the phase space

- mostly medium/high $x \rightarrow$ not enough for sea quark explorations

- guess low-x behavior (relevant for calculation of tensor charge)

choice of functional form

functional form whose Mellin transform can be computed analytically and complying with Soffer Bound at any x and scale Q²

$$h_1^{q_v}(x;Q_0^2) = F^{q_v}(x) \left[SB^q(x) + \overline{SB}^{\overline{q}}(x) \right]$$

$$\bigvee Soffer Bound$$

$$2|h_1^q(x,Q^2)| \le 2 SB^q(x,Q^2) = |f_1^q(x,Q^2) + g_1^q(x,Q^2)|$$
MSTW08 DSSV

choice of functional form

functional form whose Mellin transform can be computed analytically and complying with Soffer Bound at any x and scale Q²

$$h_1^{q_v}(x;Q_0^2) = F^{q_v}(x) \begin{bmatrix} SB^q(x) + \overline{SB}^{\overline{q}}(x) \end{bmatrix}$$

$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ Soffer Bound \\ 2|h_1^q(x,Q^2)| \le 2 SB^q(x,Q^2) = |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \\ & & \\ & & \\ MSTW08 \quad DSSV \end{array}$$

$$(x) = \frac{N_{q_v}}{\max_x[|F^{q_v}(x)|]} x^{A_{q_v}} \left[1 + B_{q_v} \operatorname{Ceb}_1(x) + C_{q_v} \operatorname{Ceb}_2(x) + D_{q_v} \operatorname{Ceb}_3(x)\right] \\ & & \\ \operatorname{Ceb}_n(x) \text{ Cebyshev polynomial} \end{array}$$

10 fitting parameters

constrain parameters

 F^{q_v}

 $|N_{q_v}| \le 1 \Rightarrow |F^{q_v}(x)| \le 1$ Soffer Bound ok at any Q²

low-x behavior

constrain parameters

low-x behavior

constrain parameters

1) δq finite => $A_q + a_q > 0$

2) "massive" jet in DIS \rightarrow h₁ at twist 3 violation of Burkardt-Cottingham s.r. $\int_{0}^{1} dx g_{2}(x) \propto \int_{0}^{1} dx \frac{h_{1}(x)}{x} \longrightarrow A_{q} + a_{q} > 1$

3) small-x dipole picture => $h_1^{q_v}(x) \stackrel{x \to 0}{\approx} x^{1-2\sqrt{\frac{\alpha_s(Q^2)N_c}{2\pi}}} \longrightarrow \text{at } Q_0 \quad A_q + a_q \sim 1$ *Kovchegov & Sievert, arXiv:1808.10354*

low-x behavior

$$\lim_{x \to 0} x SB^{q}(x) \propto x^{a_{q}} \\ \lim_{x \to 0} F^{q_{v}}(x) \propto x^{A_{q}} \\ h_{1}^{q}(x) \stackrel{x \to 0}{\approx} x^{A_{q}} + a_{q} - 1 \\ \text{tensor charge} \quad \delta q(Q^{2}) = \int_{x_{\min}}^{1} dx h_{1}^{q-\bar{q}}(x, Q^{2}) \\ \text{constrain parameters} \\ \text{low-x behavior important} \\ \delta q \quad \text{finite} => A_{q} + a_{q} > 0 \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{violation of Burkardt-Cottingham s.r.} \int_{0}^{1} dx g_{2}(x) \propto \int_{0}^{1} dx \frac{h_{1}(x)}{x} \longrightarrow A_{q} + a_{q} > 1 \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{ at twist 3} \\ \text{``massive'' jet in DIS} \rightarrow h_{1} \text{``massive'' jet in$$

3) small-x dipole picture => $h_1^{q_v}(x) \stackrel{x \to 0}{\approx} x^{1-2\sqrt{\frac{\alpha_s(Q^2)N_c}{2\pi}}} \longrightarrow \text{at } Q_0 \quad A_q + a_q \sim 1$

1

2

Kovchegov & Sievert, arXiv:1808.10354

our choice
$$A_q + a_q > \frac{1}{3}$$
 $\left| \int_0^{x_{\min}} dx \right| \sim 1\% \text{ of } \left| \int_{x_{\min}}^1 dx \right|$

for $x_{min}=10^{-6}$ from MSTW08

theoretical uncertainties

unpolarized Di-hadron Fragmentation Function D1

- quark D₁q is well constrained by $e^+e^- \rightarrow (\pi^+\pi^-) X$ (Montecarlo)
- **gluon** D_1^g is **not** constrained by $e^+e^- \rightarrow (\pi^+\pi^-) X$ (currently, LO analysis)
- **no data** available yet for $p p \rightarrow (\pi^+\pi^-) X$

the bootstrap method

- shift each exp. point by Gaussian noise within exp. variance
- create sets of virtual points to be fitted: 50, 100, 200 sets... until average and standard deviation reproduce original exp. points (here, 200x3=600)
- exclude largest and smallest 5% => 90% band

automatically accounts for correlations

results

global fit published in

Radici and Bacchetta, P.R.L. **120** (18) 192001

X^2 of the fit

 $x h_1^{d-\bar{d}} Q^2 = 2.4 \text{ GeV}^2$ down $D_1g\left(Q_0\right)=0$ 0.1 sensitive to 0.0 $D_1 g(Q_0) = \begin{cases} 0 \\ D_1 u/4 \\ D_1 u \end{cases}$ uncertainty on -0.1 gluon D₁ -0.2 0.05 0.50 0.01 0.10 Х

 $Q^2 = 4 \text{ GeV}^2 *$

JAM includes "lattice data"

Radici & Bacchetta, P.R.L. 120 (18) 192001	3)	global fit '17
Kang et al., P.R. D 93 (16) 014009	5)	"TMD fit" * Q ² =10
Anselmino et al., P.R. D87 (13) 094019	6)	Torino fit * Q ² =1
Lin et al., P.R.L. 120 (18) 152502	7)	JAM fit '17 * Q ₀ ² =2

8)	PNDME '18	Gupta et al., P.R. D98 (18) 034503
9)	ETMC '17	Alexandrou et al., P.R. D 95 (17) 114514; E P.R. D 96 (17) 099906
10)	RQCD '14	Bali et al., P.R. D91 (15)
11)	LHPC '12	Green et al., P.R. D86 (12)

results

global fit published in

Radici and Bacchetta, P.R.L. **120** (18) 192001

Compass pseudo-data

add to previous set of data a new set of SIDIS pseudo-data for **deuteron** target

statistical error ~ 0.6 x [error in 2010 proton data] <A> = average value of replicas in previous global fit

study impact on precision of previous global fit

impact of pseudo-data for deuteron

$$\chi^2/dof = 1.76 \pm 0.11$$

 $\chi^2/dof = 1.12 \pm 0.09$

probability density function of χ^2 distribution for 22 d.o.f. 31 d.o.f.

but central value of pseudodata not known → only spreading is meaningful

results

global fit published in

Radici and Bacchetta, P.R.L. 120 (18) 192001

CLAS12 pseudo-data

add to previous set of data a new set of SIDIS pseudo-data for **proton** target

х

Mh

z

impact of pseudo-data for proton

linear scale

break down of Mellin moment

break down of Mellin moment

break down of Mellin moment

impact of CLAS12 pseudodata at large x (>0.2) gives ~50% of up tensor charge relative error $\Delta g_T/g_T$ from 82% \rightarrow 43%

better χ^2

 $\chi^2/dof = 1.76 \pm 0.11$

→ only spreading is meaningful

better X²

→ only spreading is meaningful

compatibility with lattice

add to SIDIS+pp data constraint to reproduce g_T from lattice

 $Q^2 = 4 \text{ GeV}^2 *$

2) 8	glo b	al fit + constrain g _T	8)	PNDME '18	Gupta et al., P.R. D98 (18) 034503 Alexandrou et al., P.R. D95 (17) 114514:
Radici & Bacchetta, P.R.L. 120 (18) 192001	3)	global fit '17	9) 10)	RQCD '14	<i>E P.R.</i> D96 (17) 099906 <i>Bali et al.</i> , <i>P.R.</i> D91 (15)
Kang et al., P.R. D 93 (16) 014009	5)	"TMD fit" * Q ² =10	11)	LHPC '12	Green et al., P.R. D86 (12)
Anselmino et al., P.R. D87 (13) 094019	6)	Torino fit * Q ² =1			
Lin et al., P.R.L. 120 (18) 152502	7)	JAM fit '17 * Q ₀ ² =2			

not yet full compatibility

 $Q^2 = 4 \text{ GeV}^2 *$

2) global fit + constrain g_T

Radici & Bacchetta, P.R.L. 120 (18) 192001	3)	global fit '17
Kang et al., P.R. D 93 (16) 014009	5)	"TMD fit" * Q ² =10
elmino et al., P.R. D87 (13) 094019	6)	Torino fit * Q ² =1

Anseli

Lin et al., P.R.L. 120 (18) 152502 7) JAM fit '17 * $Q_0^2=2$

- **8) PNDME '18** *Gupta et al., P.R. D98 (18) 034503*
- 9) ETMC '17
- Alexandrou et al., P.R. D95 (17) 114514; E P.R. D96 (17) 099906
- **10) RQCD '14** Bali et al., P.R. D91 (15)
- **11) LHPC '12** Green et al., P.R. D86 (12)

impact of lattice g_T constraint

 X^2

$$\chi^2/dof = 1.76 \pm 0.11$$

$\chi^2/dof = 1.82 \pm 0.25$

probability density function of χ^2 distribution for 22 d.o.f. 23 d.o.f.

compatibility with lattice

add to SIDIS+pp data constraint to reproduce from lattice g_T , δu , δd

 $\overline{g_{T}}^{latt} = 1.004 \pm 0.057$

 $\delta d^{\text{latt}} = -0.218 \pm 0.026$

 $Q^2 = 4 \text{ GeV}^2 *$

1) global fit + constrain g_T , δu , δd 2) global fit + constrain g_T			
Radici & Bacchetta, P.R.L. 120 (18) 192001	3)	global fit '17	9) 10
Kang et al., P.R. D 93 (16) 014009	5)	"TMD fit" * Q ² =10	11
Anselmino et al., P.R. D87 (13) 094019	6)	Torino fit * Q ² =1	
Lin et al., P.R.L. 120 (18) 152502	7)	JAM fit '17 * Q ₀ ² =2	

PNDME '18	Gupta et al., P.R. D98 (18) 034503
ETMC '17	Alexandrou et al., P.R. D 95 (17) 114514; E P.R. D 96 (17) 099906
RQCD '14	Bali et al., P.R. D91 (15)
LHPC '12	Green et al., P.R. D86 (12)

, ð d		
n 	8) PNDME '18	Gupta et al., P.R. D98 (18) 034503
II gi	9) ETMC '17	Alexandrou et al., P.R. D 95 (17) 114514; E P.R. D 96 (17) 099906
	10) RQCD '14	Bali et al., P.R. D91 (15)
=10	11) LHPC '12	Green et al., P.R. D86 (12)

1) global fit + constrain g_T , δu , δd

2) global fit + constrain g_T

1.K.L. 120 (10) 192001	í	8.0.0	
Kang et al., P.R. D 93 (16) 014009	5)	"TMD fit"	* Q ² =1
mino et al., P.R. D 87 (13) 094019	6)	Torino fit	* Q ² =1
Kang et al., P.R. D93 (16) 014009 mino et al., P.R. D87 (13) 094019	5) 6)	"TMD fit" Torino fit	* Q ² * Q ²

Ansel

Lin et al., P.R.L. 120 (18) 152502 7) JAM fit '17 * $Q_0^2=2$

 X^2

$$\chi^2/dof = 1.76 \pm 0.11$$

$\chi^2/dof = 2.29 \pm 0.25$

probability density function of χ^2 distribution for 22 d.o.f. 25 d.o.f.

 \mathbf{X}^2

$$\chi^2/dof = 1.76 \pm 0.11$$

$\chi^2/dof = 2.29 \pm 0.25$

probability density function of χ^2 distribution for 22 d.o.f. 25 d.o.f.

compatible, but... statistically very unlikely !

More (existing) data ...

Di-hadron

refit di-hadron fragmentation functions using new data:

 $e^+e^- \rightarrow (\pi\pi) X$ constrains D_1^q (currently only by Montecarlo)

Seidl et al., P.R. D**96** (17) 032005

\mathbf{p} - \mathbf{p}^{\uparrow} collisions

 use also other (multi-dimensional) data from STAR run 2011 (s=500) and (later) run 2012 (s=200)

SIDIS

use COMPASS data on πK and KK channels, and from Λ[†] fragmentation: constrain strange contribution ?

Conclusions / Open Problems

- first global fit of di-hadron inclusive data leading to extraction of transversity as a PDF in collinear framework
- inclusion of STAR p-p[↑] data increases precision of up channel; large uncertainty on down due to unconstrained gluon unpolarized di-hadron fragmentation function → need more/better "neutron target" data
- NO apparent simultaneous compatibility with lattice for tensor charge in up, down, and isovector channels
- adding Compass SIDIS pseudo-data for deuteron increases precision of down, but leaves this scenario unaltered
- adding CLAS12 SIDIS pseudo-data for proton affects large x (error of up tensor charge reduced by ~2x), but tension with lattice even increased
- it is possible to force replicas to be **compatible with data and lattice** but situation is **statistically very unlikely**

enlarging the covered x-range is crucial \rightarrow (target)[†] program at JLab 12!

Back-up

the leading-twist PDF/TMD map

1- h₁ needed as the 3rd basic quark PDF for spin-1/2 objects

2- address novel QCD dynamics in the chiral-odd sector, also as TMD

potential for BSM discovery ?

Examples of direct access

- $\mathbf{p} \mathbf{p} \rightarrow \mathbf{e}^- \mathbf{v} + \mathbf{X}$ search for W' $\rightarrow \mathbf{e}^- \mathbf{v}$ with W' heavy partner of W

 $M_{W'} > 5.1-5.2$ TeV at 95% C.L.

puts contraints on BSM operators including scalar (ϵ_S) & tensor (ϵ_T)

Aaboud et al. (ATLAS), E.P.J. **C78** (18) 401

Examples of indirect access

 nuclear β-decay: effective field theory including operators not in SM Lagrangian; for example, tensor operator

- **neutron EDM**: estimate CPV induced by quark chromo-EDM d_q

extraction of transversity

transversity is chiral-odd \rightarrow need a chiral-odd partner

- hadron-in-jet mechanism : mixed framework h1 as PDF

2-hadron-inclusive production

framework collinear factorization

advantages of di-hadron mechanism

collinear framework

- simple product of PDF and IFF

Ex.: SIDIS $A_{\text{SIDIS}}^{\sin(\phi_R + \phi_S)}(x, z, M_h^2) \sim -\frac{\sum_q e_q^2 h_1^q(x) \frac{|\mathbf{R}_T|}{M_h} H_{1,q}^{\triangleleft}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) D_{1,q}(z, M_h^2)}$

x-dependence of AsiDis all in PDF

- flavor sum simplified by symmetries of IFF

- + data on proton and deuteron targets
- → separate valence up and down

- factorization theorems for all hard processes \rightarrow universality of h₁ H₁ \triangleleft mechanism

{ isospin symmetry charge conjugation

advantages of di-hadron mechanism

$$A_{\text{SIDIS}}^{\sin(\phi_R + \phi_S)}(x, z, M_h^2) \sim -\frac{\sum_q e_q^2 h_1^q(x) \frac{|\mathbf{R}_T|}{M_h} H_{1,q}^{\triangleleft}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) D_{1,q}(z, M_h^2)}$$

π+πtree level

$$\begin{array}{rcl} H_1^{\triangleleft u} &=& -H_1^{\triangleleft d} & \text{isospin symmetry} \\ H_1^{\triangleleft q} &=& -H_1^{\triangleleft \overline{q}} \\ D_1^q &=& D_1^{\overline{q}} \end{array} \right\} \text{ charge conjugation } + \begin{array}{r} \text{data on proton} \\ \text{and deuteron targets} \end{array}$$

proton
$$xh_1^{u-\bar{u}} - \frac{1}{4}xh_1^{d-\bar{d}} = F[A_{\text{SIDIS}}^p \text{ data, } H_1^{\triangleleft u}, f_1^q D_1^q]$$

deuteron $xh_1^{u-\bar{u}} + xh_1^{d-\bar{d}} = \tilde{F}\left[A_{\text{SIDIS}}^D \text{ data}, H_1^{\triangleleft u}, f_1^q D_1^q\right]$

separate valence up and down

IFF symmetries

$$\begin{array}{rcl} H_1^{\triangleleft u} &=& -H_1^{\triangleleft d} & \text{isospin symmetry} \\ H_1^{\triangleleft q} &=& -H_1^{\triangleleft \overline{q}} \\ D_1^q &=& D_1^{\overline{q}} \end{array} \right\} \text{charge conjugation}$$

valid only for $(\pi^+\pi^-)$ pairs and at tree level

hadronic collisions in Mellin space

$$d\sigma (\eta, M_{h}, P_{T}) \text{ typical cross section for } a+b^{\dagger} \rightarrow c^{\dagger}+d \text{ process}$$

$$\frac{d\sigma_{UT}}{d\eta} \propto \int d|\mathbf{P}_{T}| dM_{h} \sum_{a,b,c,d} \int \frac{dx_{a}dx_{b}}{8\pi^{2}\bar{z}} f_{1}^{a}(x_{a}) h_{1}^{b}(x_{b}) \frac{d\hat{\sigma}_{ab^{\dagger} \rightarrow c^{\dagger}d}}{d\hat{t}} H_{1}^{\triangleleft c}(\bar{z}, M_{h})$$
to be computed thousands times... usual trick: use Mellin anti-transform
$$h_{1}(x, Q^{2}) = \int_{C_{N}} dN x^{-N} h_{1}^{N}(Q^{2}) \qquad N \in \mathbb{C} \qquad \overset{Stratmann \& Vogelsang, P.R. D64 (01) 114007}{P_{R} D64 (01) 114007}$$

$$\frac{d\sigma_{UT}}{d\eta} \propto \sum_{b} \left(\int_{C_{N}} dN \right) \int d|\mathbf{P}_{T} (h_{1b}^{N}(P_{T}^{2})) \int dM_{h} \sum_{a,c,d} \int \frac{dx_{a}dx_{b}}{8\pi^{2}\bar{z}} f_{1}^{a}(x_{a}) x_{b}^{-N} \frac{d\hat{\sigma}_{ab^{\dagger} \rightarrow c^{\dagger}d}}{d\hat{t}} H_{1}^{\triangleleft c}(\bar{z}, M_{h})$$
pre-compute F_{b} only one time on contour C_{N}

$$\lim N \uparrow$$

this **speeds up** convergence and facilitates $\int dN$, provided that h_1^N is known analytically

- shift each exp. point by Gaussian noise within exp. variance
- create sets of virtual points to be fitted: 50

- shift each exp. point by Gaussian noise within exp. variance
- create sets of virtual points to be fitted: 50, 100

- shift each exp. point by Gaussian noise within exp. variance
- create sets of virtual points to be fitted: 50, 100, 200 sets...

- shift each exp. point by Gaussian noise within exp. variance
- create sets of virtual points to be fitted: 50, 100, 200 sets... until average and standard deviation reproduce original exp. points (here, 200x3=600)

isovector tensor charge $g_T = \delta u - \delta d$

lattice results

with different discretization schemes, lattice spacings, volumes

lattice quasi-PDF see also arXiv:1803.04393 (LP³)

Alexandrou, arXiv:1612.04644

impact of "full" lattice constraint

truncated tensor charge

1) global fit + constrain g_T , δu , δd

2) global fit + constrain g_T

3) global fit '17 *Radici & Bacchetta, P.R.L.* **120** (18) 192001 5) **"TMD fit"**

Kang et al., P.R. D93 (16) 014009