BLAZARS AS NEUTRINOS FACTORIES

CHIARA RIGHI

UNIVERSITÀ DEGLI STUDI DELL'INSUBRIA INAF – OA BRERA INFN – GENOVA

COLLABORATORS: F. TAVECCHIO, G. GHISELLINI, M. LANDONI, L. PACCIANI, S. INOUE, ...

NEUTRINO FLUX

- ANTARES
- ICECUBE
- BAIKAL DEEP UNDERWATER NEUTRINO TELESCOPE
 KM3NET (UNDER CONSTRUCTION)

INTERACTION INSIDE THE DETECTOR

→ HIGH ENERGY STARTING EVENTS (HESE)

DISCOVERY OF HIGH-ENERGY NEUTRINOS BY ICECUBE

\sim 80 EVENTS SINCE 2010 ABOVE 60TEV

\sim 10 events per year

DISCOVERY OF HIGH-ENERGY NEUTRINOS BY ICECUBE

\sim 80 EVENTS SINCE 2010 ABOVE 60TEV THE

1. Kermit the frog (K) 5. Miss Piggy (P) Steadfast and true. Empathetic and smart. But let's face it, a bit of wimp. The original diva. Narcissistic, selfish, arrogant. But one tough cookle with a good heart underneath.

6. Statler and Waldorf (W)

they throw a lot of shade

These guys come as a team. Smart, usually correct, but, dang,

0 0

7. Big Bird (Bb)

Supportive, friendly and so relentlessly optimistic that you want to punch him in the face.

3. Gonzo (G) The life of the party. Willing to do anything for a laugh. But will it good be ensured?

4. Beaker (B)

8. Oscar the Grouch (O) Hard-working. Tortured. Silent. Will he ever stand up for himself? A realist who has a tendency to always look at the dark side of

12. Scooter (S) Organized, on top of things, bu not particularly exciting or fun

9. Cookie Monster (C)

Embraces life, and his appetite with a verve that is both appealing and scary. Probably has substance abuse problems

10. Bert (Rt)

11. Frnie (F)

Supportive and understanding, but usually lets his friends make decisions for him.

Kind of like Oscar, only less

he doesn't live in trash.

aggressive and more whiny. Also

.

13. Elmo (M)

14. Animal (A)

All id and aggression, he is the life of the party that gets on your

nerves when the party is over.

15. Count Von Count (V)

He is happy only when he is counting things. Seriously. He is OCD. Not a lot of laughs, but pretty good around tax time.

16. Dr. Bunsen Honeydew (D)

Smart, motivated and ultimatel

doomed to failure. Everything he

does, he messes up, and others

(specifically Beaker) pay for it. ut he always survives

CONTINUED FROM PAGE 1

17. Rowlf the dog (R) Communicates in baby noises and is obsessed with being touched. He is the friend of a friend whom you demand not t be left alone with. Loyal, wise and pretty good at tickling the ivories. But sadly, Rowlf (and his brethren) are usually easily overlooked.

18. Sam the eagle (Se) Stoic to the point of rigidity, but one suspects there is something under that reserved facade

20. Floyd Pepper (F) Talented, like Janice and Rowlf, but tortured for his craft. Can play a mean guitar, but, yeah, man, like the scars are real.

7

WE WILL CONSIDER ONLY THROUGOING MUONS!

RELATIVISTIC PROTONS!!

RELATIVISTIC PROTONS!!

$$p + p \rightarrow \pi + X$$

OUR GALAXY
Star-forming Galaxy
AGN WINDS
LOW-ENERGY RADIOGALAXIES (FRO)

$$p + \gamma \rightarrow \pi + X$$

e.g. Ahlers and Murase 2014 Vissani and Palladino 2015

RELATIVISTIC PROTONS!!

$$p + p \rightarrow \pi + X$$

$$p + \gamma \rightarrow \pi + X$$

PROTONS ACCELERATED INSIDE THE SNR ESCAPE AND INTERACT WITH INTERGALACTIC MEDIUM

e. g. Loeb and Waxman 2006 Tamborra et al. 2014

RELATIVISTIC PROTONS!!

$$p + p \rightarrow \pi + X$$

$$p + \gamma \rightarrow \pi + X$$

PROTONS ACCELERATED INSIDE THE AGN WIND ESCAPE AND INTERACT WITH INTERGALACTIC MEDIUM

e.g. Lamastra et al. 2016 Lamastra et al. 2017

RELATIVISTIC PROTONS!!

$$p + p \rightarrow \pi + X$$

OUR GALAXY STAR-FORMING GALAXY AGN WINDS LOW-ENERGY RADIOGALAXIES (FRO)

$$p + \gamma \rightarrow \pi + X$$

PROTONS ACCELERATED INSIDE THE JET ESCAPE AND INTERACT WITH INTERGALACTIC MEDIUM

RELATIVISTIC PROTONS!!

$$p + p \rightarrow \pi + X$$

OUR GALAXY STAR-FORMING GALAXY AGN WINDS LOW-ENERGY RADIOGALAXIES (FRO)

e.g. Waxman and Bachall 1997 Atoyan and Dermer 2003 14 Tavecchio at al. 2014

RELATIVISTIC PROTONS!!

$$p + p \rightarrow \pi + X$$

OUR GALAXY STAR-FORMING GALAXY AGN WINDS LOW-ENERGY RADIOGALAXIES (FRO)

$$p + \gamma \rightarrow \pi + X$$

$$(RBS)$$
BLAZARS

e.g. Waxman and Bachall 1997 Atoyan and Dermer 2003 15 Tavecchio at al. 2014

HIGH-ENERGY SKY

>60% EXTRAGAL DUE TO BLAZAR!

16

WHAT IS A BLAZAR?

JET POINTING TO US:

OUTSHINES ANY OTHER ISOTROPIC EMISSION COMPONENT ASSOCIATED TO AGN (DISK, DUST) OR TO THE HOST GALAXY.

BLAZARS

SPECTRAL ENERGY DISTRIBUTION (SED) DOMINATED BY THE RELATIVISTICALLY BOOSTED NON-THERMAL CONTINUUM EMISSION OF THE JET.

MODELS

LEPTONIC

ARE BLAZARS DETECTABLE BY ICECUBE? FSRQ BL LAC

Possible correlation between one neutrino event and a γ -ray flare of a FSRQ object (Kadler et al. 2016).

 \checkmark EM- ν emission can't be exclusively hadronic (Gao et al. 2017)

Murase and Waxman 2016
 p+γ reaction with UV photons of
 BLR produce neutrino spectra harder
 than that "IceCube spectrum"

- Padovani et al. 2016 (spatial correlation with γ -ray BL Lacs detected above 50GeV)
- Tavecchio et al. 2014 efficient neutrino production (spine-layer model only for high-energy emitting BL Lacs)

Ghisellini et al. 2005

FERMI 2FHL CATALOGUE (SOURCES EMITTING ABOVE 50GEV) IS A GOOD REPRESENTATION OF THESE SOURCES²⁰

ASSUMPTION 2: LINEAR RELATION BETWEEN γ -RAY EMISSION AND NEUTRINO EMISSION.

Ackermann et al. 2015

Right	eta	.2017 3					F					
$N_{\nu} = \dot{N}_{\nu} T_{\exp} = T_{\exp} \int_{\Gamma}^{E_2} A_{eff}(E_{\nu}) \Phi_i(E_{\nu}) dE_{\nu}$												
	cu	$\mathbf{P}^{\mathbf{e}_{\text{trade}}}_{60^{\circ} < \delta < 90^{\circ}} \mathbf{F}$	LUX	#ν		JE						
10	2 3	$\begin{array}{c} 1 \mathrm{ES1959}{+}650 \\ 1 \mathrm{ES0502}{+}675 \\ \mathrm{S50716}{+}71 \\ 1 \mathrm{ES0502}{+}11 \\ 1 ES$	$1.38 \\ 1.14 \\ 0.44 \\ 0.25$	$\begin{array}{c} 0.27 \\ 0.22 \\ 0.08 \\ 0.05 \end{array}$			diction	F	R.,	Visibility	R.,	Visibility
	$\frac{4}{5}$	1RXSJ013106.4+61203 4C+67.04	$\begin{array}{c} 0.25 \\ 0.25 \end{array}$	0.05 0.05		x UP		ιν	10p	at horizon		at 10°
	6	Mkn180	0.20 0.24	0.05	ande		Mlm 491	8 77	4 50	0.30	5.80	0.30
	7	$MS0737.9{+}7441$	0.13	0.02	UN D'	$\frac{1}{2}$	PKS2155_304	2.11	9.03	0.50	2 53	0.59
	8	RXJ0805.4+7534	0.08	0.02	K-4.	2	Mlm501	$\frac{2.10}{3.11}$	1.65	0.00	2.00	0.09
	9	S40954+65	0.07	0.01		3 1	DC1552 + 112	1.90	1.00	0.28	2.20	0.59
	10	541749+70	0.07	0.01		4 5	1 G1333 + 113 DVS0447 420	1.09	1.42	0.44 0.67	1.00	0.51
	11	$\frac{30^{\circ} < \delta < 60^{\circ}}{1000}$	0 77	4.00		0 6	PK50447-459	0.70	0.01	0.07	1.02	0.79
	11	Mkn421 Mlap501	8.77	4.89		07	PK51424+240 DVC2005 420	1.00	0.07	0.39	0.79	0.40
	12	$\begin{array}{c} \text{MKn} \text{D} \text{O} 1 \\ \text{D} \text{O} 1 2 1 \\ \text{P} \text{O} 4 \\ \text{O} 4$	3.41	1.90		(PKS2005-489	0.51	0.63	0.72	0.75	0.86
	13	FG1210+304	0.92 0.87	0.52		8	TXS0518+211	0.87	0.59	0.39	0.72	0.48
	14	$1H1013 \pm 498$	0.87	0.49		9	PG1218 + 304	0.92	0.55	NC19.34	0.69	0.44
	16	1ES0033+595	0.82	0.46		10	1ES0647 + 250	0.75	0.47	0.36	0.60	0.46
	17	1ES2344+514	0.69	0.39		11	3C66A	0.87	.0.38	0.25	0.54	0.36
	18	1ES1215+303	0.52	0.29		12	1RXSJ054357.3-55320	V0130	0.40	0.78	0.52	1.00
	19	B32247 + 381	0.37	0.21		13	PKS0301-243	0.43	0.44	0.59	0.49	0.66
	20	B30133 + 388	0.35	0.19		14	1H1914-194	0.45	0.44	0.57	0.49	0.63
		$0^{\circ} < \delta < 30^{\circ}$				15^a	1H1013+198	0.87	-	-	0.48	0.32
	21	PG1553 + 113	1.89	2.47		15^b	1 R 5 3 $194246.3 + 10333$	0.41	0.32	0.45	-	-
	22	PKS1424+240	1.00	1.30		16	V ⁹ KS1440-389	0.36	0.41	0.66	0.47	0.76
	23	PG1218 + 304	0.92	1.20		60	1 E S 0 3 4 7 - 121	0.39	0.35	0.53	0.40	0.60
	24	TXS0518+211	0.87	1.14		18	1ES1215 + 303	0.52	0.31	0.34	0.39	0.44
	25	1ES0647+250	0.75	0.99		19	1BXSJ101015 9-31190	0.32	0.34	0.60	0.39	0.69
	26	1ES1215+303	0.52	0.69		$\frac{10}{20}$	BX.10648 7+1516	0.02	0.33	0.00	0.38	0.49
	27	$ \begin{array}{c} \text{KAJU048.7} + 1510 \\ 1 \text{DVS} 1104946.2 \pm 10999 \\ \end{array} $	0.45	0.59		20	101001011 1010	0.40	0.00	0.42	0.00	0.40
	28 20	11.A.5.J.194240.3+10333 DBS0413	0.41	0.04								
	29 30	1H1790⊥117	0.32	0.42								
	00	1111/20-111	0.20	0.00								

10⁻⁸ GeV/cm²s yr⁻¹

TXS 0506 + 056

22 SETTEMBRE 2017

TXS 0506+056

$T_{XS} 0506 + 056$

MAGIC TELESCOPES

HIGH-ENERGY GAMMA-RAY VIA CHERENKOV RADIATION

TXS 0506 + 056

IC170922A AND TXS0506+056

2017 SEPTEMBER 22

MODELS

THE COMMUNITY IS STILL WORKING ON THIS

TAKE HOME MESSAGES

- HIGH-ENERGY NEUTRINOS IS A FIELD TO EXPLORE
- BLAZAR ARE GOOD CANDIDATES TO PRODUCE HIGH-ENERGY NEUTRINOS (THE CASE OF TXS 0506 + 056)
- WAITING FOR NEW DETECTION AND NEW DETECTOR

