Light and heavy clusters in warm stellar matter

Helena Pais CFisUC, University of Coimbra, Portugal

in collaboration with F. Gulminelli, C. Providência, and G. Roepke

Women in Nuclear and Hadron Theoretical Physics: the last frontier - WTPLF 2018 Genova, Italy, December 10-11, 2018

Acknowledgments:

Organising Committee

FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOF

Where do these clusters form?

in http://essayweb.net/astronomy/blackhole.shtml

Credit: Soares-Santos et al. and DES Collab**EVOLUTION OF STARS** Planetary Nebula GW170817 GW170817 Small Star **Red Giant DECam observation DECam observation** White Dwarf $(0.5-1.5$ days post merger) $($ > 14 days post merger) Neutron Star Supernova **Red Supergiant** Large Star **Stellar Cloud** with NS mergers Protostars Blacl **IMAGES NOT TO SCALE** Hole

in https://www.ligo.org/detections/GW170817.php

scenarios where light and heavy clusters are important

- ^{Coulomb lattice}
• The clusters, light and heavy, also appear in CCSN (fixed yp and finite T)
- In CCSN, the clusters can modify the neutrino transport, affecting the cooling of the PNS.

Many EoS models in literature: Phenomenological models (parameters are fitted to nuclei properties): **RMF, Skyrme**…

Solution: Need Constraints (Experiments, Microscopic calculations, Observations)

and then

- •Match OC EoS at the neutron drip with IC EoS
- •Match IC EoS at *crust-core transition* with Core EoS

Light clusters • New degrees of freedom of the unit clusters • New degrees of freedom of the the meson couplings. •New degrees of freedom of the system.

$$
\mathcal{L} = \sum_{j\text{ }= \text{ }t \text{, }h} \text{ } \mathcal{L}_{j} \text{ } + \mathcal{L}_{\alpha} \text{+ } \mathcal{L}_{d}
$$

the vector cluster-meson coupling

$$
\boxed{g_{vj}\,=\,A_jg_v}
$$

 $\overline{}$

with

$$
\mathcal{L}_j = \bar{\psi} \left[\gamma_\mu i D^\mu_j - M_j^* \right] \psi, \ \ i D^\mu_j = i \partial^\mu - \widehat{g_{\nu j}} \psi^\mu - \frac{g_\rho}{2} \boldsymbol{\tau}_j \cdot \mathbf{b}^\mu
$$

for the fermions tritons and helions, and for the bosons alphas and deuterons, we have:

$$
\mathcal{L}_{\alpha} = \frac{1}{2} (i D_{\alpha}^{\mu} \phi_{\alpha})^* (i D_{\mu \alpha} \phi_{\alpha}) - \frac{1}{2} \phi_{\alpha}^* (M_{\alpha}^*)^2 \phi_{\alpha},
$$

$$
\mathcal{L}_{d} = \frac{1}{4} (i D_{d}^{\mu} \phi_{d}^{\nu} - i D_{d}^{\nu} \phi_{d}^{\mu})^* (i D_{d\mu} \phi_{d\nu} - i D_{d\nu} \phi_{d\mu})
$$

$$
-\frac{1}{2} \phi_{d}^{\mu*} (M_{d}^*)^2 \phi_{d\mu}, \quad i D_{j}^{\mu} = i \partial^{\mu} - g_{\nu j} \omega^{\mu}
$$

In-medium effects - g_{sj}

 \bullet Binding energy of each cluster: $\vert B_{j}=A_{j}m^{*}-M_{j}^{*}\,,\quad j=d,t,h,\alpha\vert$

with $m^* = m - g_s \phi_0$ the nucleon effective mass and

$$
M_j^* = A_j m - (B_j)^2 \phi_0 - (B_j^0 + (b B_j)^2)
$$
 the cluster effective mass.

the scalar cluster-meson coupling

$$
g_{sj} = \underbrace{x_{sj}}A_jg_s
$$

needs to be determined from exp. constraints

In-medium effects - δB_i

EoS for HM with light clusters

•The total baryonic density is defined as:

$$
\rho = \rho_p + \rho_n + 4\rho_\alpha + 2\rho_d + 3\rho_h + 3\rho_t
$$

• The global proton fraction as

$$
Y_p = y_p + \frac{1}{2}y_\alpha + \frac{1}{2}y_d + \frac{2}{3}y_h + \frac{1}{3}y_t
$$

with $y_i = A_i(\rho_i/\rho)$ the mass fraction of cluster i.

- Charge neutrality must be imposed: $\rho_e = Y_p$ ρ
- The light clusters are in chemical equilibrium, with the chemical potential of each cluster i defined as

$$
\mu_i = N_i \mu_n + Z_i \mu_p
$$

Determination of x_s : Virial EoS

- VEoS: model-independent constraint, only depends on experimentally binding energies and scattering phase shifts.
- Provides correct zero-density limit for finite T EoS.
- Breaks down when interaction with particles becomes stronger:

takes action!! δB_i

Contribution of δB_j

Cluster fractions - effect of δB_j

• δB_j important for dissolution of clusters!

Equilibrium constants

Qin et al, PRL 108, 172701 2012

• Our model describes quite well exp data!

The pasta phases

- •Competition between Coulomb and nuclear forces leads to frustrated system
- Geometrical structures, the pasta phases, evolve with density until they melt \longrightarrow crust-core transition
- •Criterium: pasta free energy must be lower than the correspondent hm state

Why are these phases important?

- They may have an effect in the cooling of the star.
- They do have an effect in the radius of the stars, but not in the maximum mass:

Pasta phases - calculation (I)

- Coexistence Phase (CP) approximation:
	- **• Separated regions of higher (pasta phases) and lower density (background nucleon gas).**
	- Gibbs equilibrium conditions: for $T=T^I=T^{II}$: $\mu_p^I=\mu_p^{II}$ $T = T^I = T^{II}$

- **• Finite size effects are taken into account by a surface and a Coulomb terms in the energy density, after the coexisting phases are achieved.**
- Total $\mathcal F$ and total ρ_p of the system:

$$
\mathcal{F} = f\mathcal{F}^I + (1 - f)\mathcal{F}^{II} + \mathcal{F}_e + \epsilon_{surf} + \epsilon_{coul}
$$

$$
\rho_p = \rho_e = y_p \rho = f\rho_p^I + (1 - f)\rho_p^{II}
$$

and

$$
\varepsilon_{\rm surf} = 2 \varepsilon_{\rm Coul}
$$

check PRC 91, 055801 2015

 $\mu_n^I = \mu_n^{II}$

 $P^I = P^{II}$

Pasta phases - calculation (II) • Compressible Liquid Drop (CLD) approximation: **The total free energy density is minimized, including the surface and Coulomb terms. The Gibbs equilibrium conditions become:** Check PRC 91, 055801 2015

$$
\mu_n^I = \mu_p^{II},
$$

\n
$$
\mu_p^I = \mu_p^{II} - \frac{\epsilon_{surf}}{f(1-f)(\rho_p^I - \rho_p^{II})},
$$

\n
$$
P^I = P^{II} - \epsilon_{surf} \left(\frac{1}{2\alpha} + \frac{1}{2\phi} \frac{\partial \phi}{\partial f} - \frac{\rho_p^{II}}{f(1-f)(\rho_p^I - \rho_p^{II})} \right)
$$

Cluster fractions - CLD vs HM

• Light clusters with $A \leq 12$.

- Heavy cluster with light clusters (CLD+cl) **VS.** homogeneous matter with light clusters (HM+cl).
	- 10^{-2} $\overline{\mathsf{x}}$ 10⁻¹ 1 10^{-3} 10⁻² 10⁻¹ FSU, x_s =0.85, δ B≠0 T=5 MeV, $y_p = 0.2$ $A_{\text{cl}} \leq 12$ CLD+cl HM+cl ρ (fm-3) (free X(light) X(heavy)
	- The heavy cluster makes the light clusters less abundant but increases their melting density, as compared with the HM+cl calculation.
	- The background of free nucleons also decreases in the presence of the heavy cluster.

- **•A simple parametrisation of in-medium effects acting on light clusters is proposed in a RMF framework.**
- **•Interactions of clusters with medium described by modification of sigma-meson coupling constant.**
- **•Clusters dissolution obtained by the density-dependent extra term on the binding energy.**
- $x_{s,i} = 0.85 \pm 0.05$ reproduces both virial limit and Kc from HIC.
- **•Light clusters and pasta structures are relevant and should be explicitly included in EoS for CCSN simulations and NS mergers.**
- **•Extra constraints from experimental data are needed!!**

Grazie mille!

Thank you!