

Solar fusion in the Sun and neutrino emission

- Fusion reactions in the core of the Sun
- \succ pp dominant in the SUN (99% of the energy and v production))
- CNO important for larger mass stars

13**C**

β+ I

13N

(p,γ)

Solar neutrinos spectrum

Many years long scientific debate: solar fusion and ν oscillation

SNO detector

2

0

3

 $\phi_{e} (10^{6} \text{ cm}^{-2} \text{ s}^{-1})$

- \blacktriangleright Detect v_e and v_{μ} , v_t
- Neutrino oscillations

ν oscillation

Oscillation parameters:

- Mixing angles: $\theta_{12}, \theta_{13}, \theta_{23}$
- Mass squared differences: $\Delta m^2_{21}, \Delta m^2_{32}$ and the sign of Δm^2_{32}
- Complex phase: $\delta \equiv \delta_{CP}$

- 3 mixing angles θ_{ij} :
 - $\theta_{23} \approx 45^{\circ}$ (which quadrant?)
 - $\theta_{13} \approx 9^{\circ}$ (non-0 value confirmed in 2012) ○ $\theta_{12} \approx 33^{\circ}$
- Majorana phases $\alpha 1$, $\alpha 2$ and CPviolating phase δ unknown

v oscillation: LMA-MSW parameters

Solar electron v survival probability after traversing the SUN (LMA-MSW)

oscillation:

ν

Including latest SuperKamiokande results

 v_{e} conversion probability influenced by matter interaction depending on electron density

Solar metallicity and solar neutrinos

Since 2001: new analysis of spectroscopic data from photosphere, revision of surface solar metallicity, lower values (LZ) But solar models reproducing these new LZ values **disagree with elioseismology data** (solar abundance problem)

The prediction of solar $\boldsymbol{\nu}$ flux is sensitive to the Sun metallicity

E	lux	B16-GS98 HZ	B16-AGSS09met LZ
$\overline{\Phi}$	(pp)	$5.98(1 \pm 0.006)$	$6.03(1 \pm 0.005)$
Φ	(pep)	$1.44(1 \pm 0.01)$	$1.46(1 \pm 0.009)$
Φ	(hep)	$7.98(1 \pm 0.30)$	$8.25(1 \pm 0.30)$
Φ	(^7Be)	$4.93(1 \pm 0.06)$	$4.50(1 \pm 0.06)$
$\longrightarrow \Phi$	(⁸ B)	$5.46(1 \pm 0.12)$	$4.50(1 \pm 0.12)$
Φ	(¹³ N)	$2.78(1 \pm 0.15)$	$2.04(1 \pm 0.14)$
CNO Φ	(¹⁵ O)	$2.05(1 \pm 0.17)$	$1.44(1 \pm 0.16)$
Φ	(^{17}F)	$5.29(1 \pm 0.20)$	$3.26(1 \pm 0.18)$

Units: pp: 10¹⁰ cm⁻² s⁻¹; Be: 10⁹ cm⁻² s⁻¹; pep, N, O: 10⁸ cm⁻² s⁻¹; B, F: 10⁶ cm⁻² s⁻¹; hep: 10³ cm⁻² s⁻¹

⁷Be: 8.7% diff ⁸B: 17.6% diff CNO: 40% diff

N. Vinyoles et al. The Astrph. Journ. 835 1 (2017)

- Designed to detect solar ⁷Be v
- We measure the entire pp spectrum
- Has become a standard against which compare low background experiments

Extreme radio-purity

internal radioactivity

traces of radioisotopes in the scintillator (U,Th,⁴⁰K)

external y rays

from fluid buffer, steel sphere, PMT glass and light concentrators (⁴⁰K,²⁰⁸TI,²¹⁴Bi)

radon emanation

from the PMTs and steel sphere

cosmic muons

and their secondaries

cosmogenics

neutrons and radionuclides from µ spallation and hadronic showers

fast neutrons from external muons

The need of low radioactive background in Borexino

Detection of $\,$ MeV-subMeV ν

No event by event signature in liquid scintillator

- shape of energy spectrum,
- radial distribution of the events,
- some pulse shape discrmination

Lack of directionality

~50 events/day 100 t expected for ⁷Be v 5 10⁻⁹ Bq/Kq Drinking water: 10 Bq/Kg Human body is: 5 KBq (⁴⁰K)

Water Cerenkov detectors can see the $\boldsymbol{\nu}$ direction

Accurate modelling of the detector response

Event energy : from the number of PMT hits (or charge) 550 Np@1 MeV $\sigma_{\rm F}$ = 50 KeV@1MeV

Position reconstruction: use events in the inner part of the vessel $\sigma_{x,v,z}$ =10 cm@1MeV

Pulse shape discrimination: from the scintillation time profile

βα $\beta + \beta -$

Number of Pmt hit (energy)

600

500

700

Ο.

0.1

0.1

0.1

0.

0.0 0.06

0.0

200

300

Borexino data taking history

.. not only solar neutrinos!!!

All the pp chain v measured by Borexino with a unified analysis (Phase II)

pp, ⁷Be, pep, (CNO) Low Energy Region (LER) 0.19 – 2.93 MeV High energy region (HER) 3.2 – 16 MeV HER1 (3.2-5.7) MeV + HER2 (5.7-16) MeV ⁸B

Low energy threshold: limited by residual 2.6 γ rays from ²⁰⁸ Tl decays in the nylon vessel

Apply cuts to remove some known background on event by event basis

¹¹C tag and split the LER energy spectrum in ¹¹C tagged and ¹¹C subtracted The analysis stratetgy

- Select a proper fiducial volume
- Fit distribution of global quantities built with the events surving the cuts
- Use of an accurate Monte Carlo tuned with calibration sources covering all the range

Choice of the FV

- LER : 71.3 t (r<2.8 m and -1.8 <z<2.8 m)
- HER1 entire mass of the scintillator (266 t)
- HER2 z<2.5 m (due to vessel leak events) (227.8 t)

pp-chain solar neutrinos

Maximize a binned likelihood through a multivariate approach in the LER region ٠

$$L(\mathcal{G}) = L_{sub}(\mathcal{G}) \cdot L_{tag}(\mathcal{G}) \cdot L_{rad}(\mathcal{G}) \cdot L_{PS-L_{pr}}(\mathcal{G})$$
Pulse shape parameter
Energy spectrum ¹¹C subtracted
Energy spectrum ¹¹C tagged
Fit the radial distribution of the events in the ⁸B energy region
Fit the radial distribution of the events in the ⁸B energy region
$$ARTICLE$$
Nature Oct 25th 2018
Comprehensive measurement of C

Fit the radial distribution of the events in the ⁸B energy region ٠

Signal and background in the Low Energy Region

p

Data energy spectrum in the LER region (0.19-2.93 MeV) before and after cuts

Event selection

- removal μ and cosmogenics (1.5% dead time)
- removal of Bi-Po214
- noise events
- Fiducial Volume (R<2.8 m, -1.8 < z < 2.2m)
- 71.3 tons
- no $\alpha\beta$ discrimination
- Fraction of good events removed by cuts <0.1%

Simulated energy spectrum in LER region including solar v and the main background components

Purification: reduction of ⁸⁵Kr, ²¹⁰B

²³²Th (from ²¹²Bi-Po)

- < 5.7 10⁻¹⁹ g/g 95% C.L. < 9.4 10⁻²⁰ g/g 95% C.L.
- PHASE 1: 3 10⁻¹⁸ g/g

²³⁸U (from ²¹⁴Bi-Po)

- PHASE 1: 5 10⁻¹⁸ g/g

¹¹C (β + decay) : Three Fold Coincidence and β +/ β - discrimination

- $\blacktriangleright\,$ Identify μ and μ track
- > Detect n (γ signal due to n capture after themalization)
- \blacktriangleright Space time cuts around the μ track and n position: ¹¹C should be there
- Build a Likelihood function to evaluate if an event is a ¹¹C

Divide the exposure in 2 samples: ¹¹C subtracted & ¹¹C tagged

Performances: 92.4 +- 4 % tagging efficiency exposure: 64% in the ¹¹C subtracted spectrum

Novel β +/ β - pulse shape parameter:

Energy normalized likelihood of the position reconstruction

Pdf of the position rec. assumes point like, prompt scintillation but:

- e+ slows down, form O-Ps with few ns lifetime
- Multiple interaction of 511 γ within about 20 cm

- The max likelihhood assumes lower values for true $\beta\text{-}$ events than for ^{11}C decay

Toy-MC and sensitivity studies

Example of multivariate fit: energy spectrum

Energy spectrum ¹¹C tagged N_h

Monte Carlo Fit

- Full simulation of energy loss&detector geometry
- Tracking of single scintill.& Cherenkov photons
- Absorption, re-emission, scattering..
- Detection on PMTs & electronics response simulation
- Tuned with calibration data taken during Phase 1
- Solar $\boldsymbol{\nu}$ and back. simulated with known time variations of the detector
- Processed as real data
- Data analysis free fit parameters: solar v and background rate
- If it works: MC well tuned & detector is stable

CNO fixed to HZ and LZ values

Example of multivariate fit: energy spectrum

Energy spectrum ¹¹C subtracted N_h

Monte Carlo Fit

- Full simulation of energy loss&detector geometry
- Tracking of single scintill.& Cherenkov photons
- Absorption, re-emission, scattering..
- Detection on PMTs & electronics response simulation
- Tuned with calibration data taken during Phase 1
- Solar $\boldsymbol{\nu}$ and back. simulated with known time variations of the detector
- Processed as real data
- Data analysis free fit parameters: solar v and background rate
- If it works: MC well tuned & detector is stable

CNO fixed to HZ and LZ values

Zoom of the lowest energy region, below 800 KeV

Example of multivariate fit of the data:

- Energy spectrum zoomed in the low energy region (200-830 KeV)
- N_p^{dt2}
- •
- Analytical model to link E to Np, Npe
- Including scintillation and Cerenkov Light
- Model to describe the E resolution
- Some model parameters fixed (comparison with MC or calib, data)
- Describe the energy response and resolution averaged in the FV
- Data Analysis free fit parameters:

solar v and background rate + 6 model parameters (Light Yield, 2 resolution param., position & width of 210Po peak, starting point of the 11C spectrum)

- Possibility to descrive unknown time variations
- Easy work at low energy (high rate 14C)

CNO fixed to HZ and LZ values

5 σ evidence of pep solar ν (including systematics uncertainties)

Likelihood profile resulting from the multivariate fit

Upper limit on the CNO flux

	Borexino result	Expected HZ	Expected LZ
CNO ν	< 8.1 95%C.L	4.91 +-0.56	3.62 +- 0.37
	cpd/100t	cpd/100t	cpd/100t

One-sided test statistics - 95% CL upper limit

The ⁸B signal: fit of the radial distribution of the events in the HER1 region (3.2-5.7 MeV)

- Gamma due to n capture n produced through (α,n) reaction

- ²⁰⁸Tl from ²³²Th of the vessel
- and in the scintillator bulk
- PDF from MonteCarlo

Borexino experimental results The pp chain solar neutrino Rate Solar v Flux Flux -SSM predictions results of Borexino (cm⁻² s⁻¹) (cm-2 s-1) (cpd/100 t) $(6.1 \pm 0.5^{+0.3}_{-0.5}) \times 10^{10}$ $5.98(1.\pm0.006) \times 10^{10}$ (HZ) $134 \pm 10^{+6}_{-10}$ pp 2.5% accuracy 6.03(1.±0.005) × 1010 (LZ) ⁷Be $48.3 \pm 1.1^{+0.4}_{-0.7}$ $(4.99 \pm 0.11 \pm 0.06) \times 10^9$ $4.93(1.\pm0.06) \times 10^{9}$ (HZ) $4.50(1.\pm0.06) \times 10^{9}$ (LZ) pep (HZ) $(1.27 \pm 0.19^{+0.08}_{-0.12}) \times 10^{8}$ $1.44(1.\pm0.009) \times 10^{8}$ (HZ) $2.43 \pm 0.36 \pm 0.15$ $1.46(1.\pm0.009) \times 10^{8}$ (LZ) pep (LZ) $2.65 \pm 0.36^{+0.15}_{-0.24}$ $(1.39 \pm 0.19^{+0.08}_{-0.12}) \times 10^{8}$ $1.44(1.\pm0.009) \times 10^{8}$ (HZ) $1.46(1.\pm0.009) \times 10^{8}$ (LZ) ⁸Bher-1 0.136+0.013+0.003 $(5.77^{+0.56+0.15}_{-0.56-0.15})$ $\times 10^{6}$ $5.46(1.\pm0.12) \times 10^{6}$ (HZ) 4.50(1.±0.12) × 10⁶ (LZ) pp⁸B_{HER-II} 0.087+0.080+0.005 $(5.56^{+0.52+0.33}_{-0.64-0.33}) \times 10^{6}$ 5.46(1.±0.12) × 10⁶ (HZ) 4.50(1.±0.12) × 106 (LZ) 150 [≉]B_{HE} 0.223+0.015+0.006 $^{8}\mathrm{B}$ $5.46(1.\pm0.12) \times 10^{6}$ (HZ) $(5.68^{+0.29}_{-0.41}, 0.03) \times 10^{6}$ 4.50(1.±0.12) × 10⁶ (LZ) -7_{Be}-> pep hep CNO < 8.1 (95 % C.L.) < 7.9 × 10⁸ (95 % C.L.) 4.88(1.±0.11) × 10⁸ (HZ) 0.1 0.2 0.5 2 5 10 20 1 $3.51(1.\pm0.10) \times 10^{8}$ (LZ) Neutrino energy (MeV)

The neutrino survival probability

Not Standard v Interactions modify the survival probability...

Implication of the results: probe solar fusion with R

Implication of the results: check solar Luminosity with v and with photons

$$L_{neutrinos} = 3.89_{-0.42}^{+0.35} \quad 10^{33} \ erg \ / \ s$$

$$L_{photon} = 3.846 \pm 0.015 \quad 10^{33} \ erg \ / s$$

A step toward the understanding of the metallicity...?

Annual modulation of the ⁷Be solar ν in Borexino

Effort toward the CNO solar $\boldsymbol{\nu}$ measurement

1) Reduce ²¹⁰Bi by purification: partially achieved

2) Infer the ²¹⁰Bi activity from the ²¹⁰Po vs time

Assuming ²¹⁰Bi rate constant

 $n_{\rm Po}(t) = [n_{\rm Po,0} - n_{\rm Bi}] \exp(-t/\tau_{\rm Po}) + n_{\rm Bi}.$

 $\begin{array}{c} 210 \text{Pb} & \xrightarrow{\beta (63 \text{ KeV})} 210 \text{Bi} & \xrightarrow{\beta} 210 \text{Po} & \xrightarrow{\alpha} 206 \text{Pb} \\ T_{1/2}=22y & 5 \text{ days} & 138 \text{ days} & \text{stable} \end{array}$

F. Villante et al., Phys. Lett. B 701 (2011)

> Look at the ²¹⁰Po time decay: at regime we should have the same the amount of ²¹⁰Po and ²¹⁰Bi

²¹⁰Po is easy to count thanks to PSD in the scintillator

Needed:

- ²¹⁰Po activity not too high: actual values are OK
- stable conditions for long time (some years..)
- no additional ²¹⁰Po sources

We observed ²¹⁰Po leaching out the nylon vessel and moving into the FV due to convection motions Thermal insulation &temperature control of the detector to reduce and control thermal gradients

Before thermal insulation

After thermal insulation

²¹⁰ Po decay in the interior of the inner vessel (r<2.5 m and abs(z)<1.5m)

Conclusions

- Borexino running since May 2007
- We measured all v from pp chain
- Annual modulation of 7Be v detected
- Additional results on rare processes
- Geoneutrinos detected with 5.9 s (using data from the year 2007 to 2015)

and new results coming soon

- Effort in progress to measure CNO ν

Purification of the scintillator

6 cycles, closed loop Reduction factors: → 4.6 for ⁸⁵Kr → 2.3 for ²¹⁰Bi

Background (<i>LER</i>)	rate (Bq/100 t)
¹⁴ C(0.156 MeV, β ⁻)	[40.0 ± 2.0]
Background (<i>LER</i>)	rate (cpd/100 t)
⁸⁵ Kr (0.687 MeV, β ⁻) (internal)	6.8 ± 1.8
²¹⁰ Bi (1.16 MeV, β) (internal)	17.5 ± 1.9
¹¹ C (1.02-1.98 MeV, β ⁺) (internal)	26.8 ± 0.2
²¹⁰ Po (5.3 MeV, α) (internal)	260.0 ± 3.0
⁴⁰ K (1.460 MeV, γ) (external)	1.0 ± 0.6
²¹⁴ Bi (<1.764 MeV, γ) (external)	1.9 ± 0.3
²⁰⁸ T1 (2.614 MeV, γ) (external)	3.3 ± 0.1

Rate of relevant background

Background (HER-I)	rate (cpd/227.8 t)
μ, cosmogenics, ²¹⁴ Bi (internal)	$[6.1^{+8.7}_{-3.1}10^{-3}]$
(α, n) (external)	0.224 ± 0.078
²⁰⁸ T1(5.0 MeV, β^{-} , γ) (internal)	$[0.042 \pm 0.008]$
²⁰⁸ T1(5.0 MeV, β^{-} , γ) (emanated)	0.469 ± 0.063
²⁰⁸ T1(5.0 MeV, β^{-} , γ) (surface)	1.090 ± 0.046
Background (HER-II)	rate (cpd/266.0 t)
μ, cosmogenics (internal)	$[3.8^{+14.6}_{-0.1}10^{-3}]$
(α, n) (external)	0.239 ± 0.022