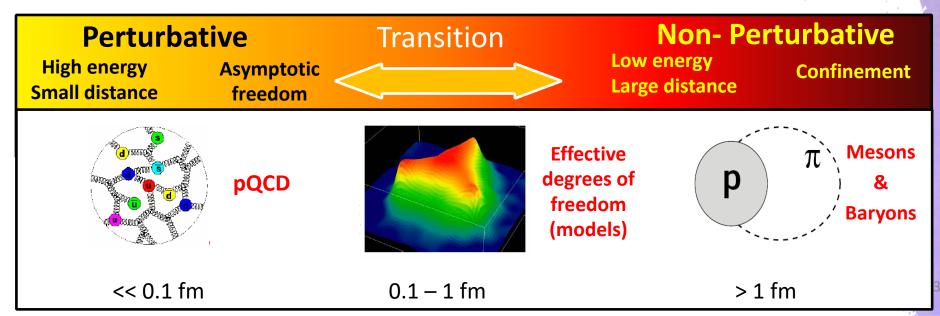


HADRON SPECTROSCOPY WITH PHOTONS AT CLAS AND CLAS12

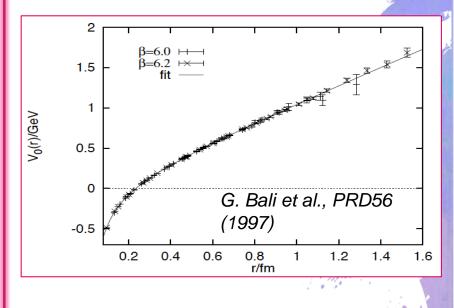
Alessandra Filippi INFN Torino, Italy


WTPLF2018, Genova, December 10, 2018

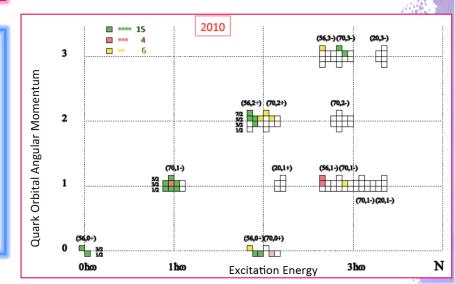
Outline

- Hadron spectroscopy: open problems in the meson and baryon spectrum
- Hadron spectroscopy in photoproduction reactions
 - With real photons: CLAS6
 - Some selected results
 - With virtual photons: CLAS12
 - On-going data taking, recently started
 - New results awaited soon
- Summary and conclusions

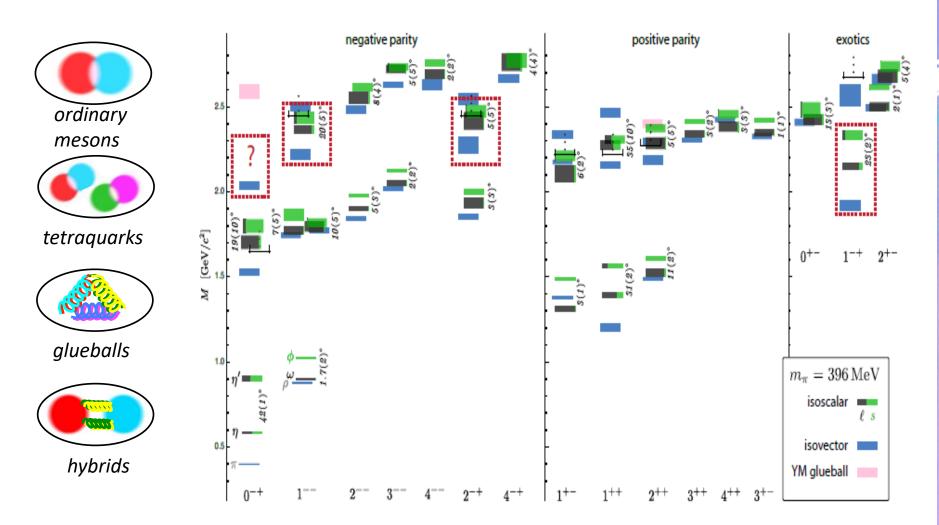
Hadron spectroscopy: a tool to understand QCD


- The dynamics of the QCD confinement are responsible for most of the mass of hadrons: dominant manifestation of strong force
 - Only 1% due to quark masses
- How to understand these effects?
 - Perturbative QCD effects still largely unknown
 - Study of the phenomenology of hadrons and their spectrum
 - Identify the relevant degrees of freedom
 - Understand the role of gluons and the origin of confinement

Meson vs baryon spectroscopy

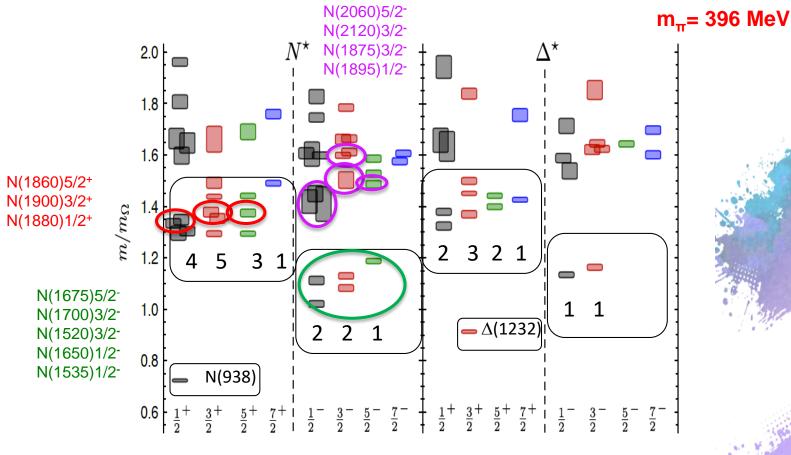

Meson spectroscopy

- Light quark spectroscopy (u,d,s)
 - Probes the strong force at large distances (confinement)
 - Sensitive to chiral symmetry breaking and vacuum condensate
 - Non perturbative regime
- Heavy quark spectroscopy (b, c, t)
 - Probes the strong force at small distances
 - Perturbative approaches can be applied
 - The spectrum can be described by non-relativistic quark models



Baryon spectroscopy

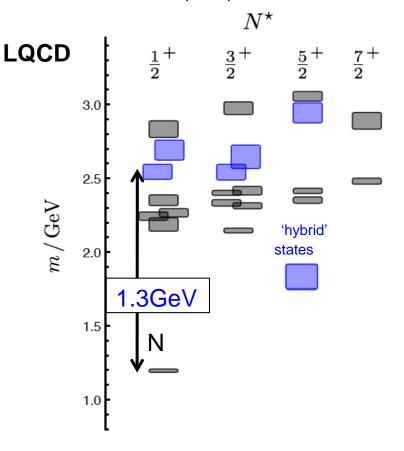
- SU(6)xO(3) symmetry, fundamental for the development of QCD
 - Multiplet structure → starting point for non-relativistic Quark Models
 - Microscopic structure → colored quarks



LQCD expectations for the meson spectrum

Remarkable agreement of LQCD calculation with the expected meson spectrum the lightest exotic of the spectrum now expected at 1600 MeV (1⁻⁺) and 2 GeV (0⁺⁻) 5

LQCD expectations for N* and Δ excitations

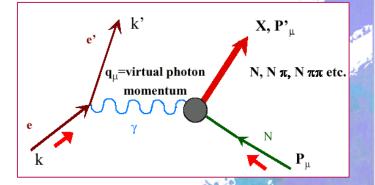

R.G. Edwards et al., PR D84 (2011) 074508

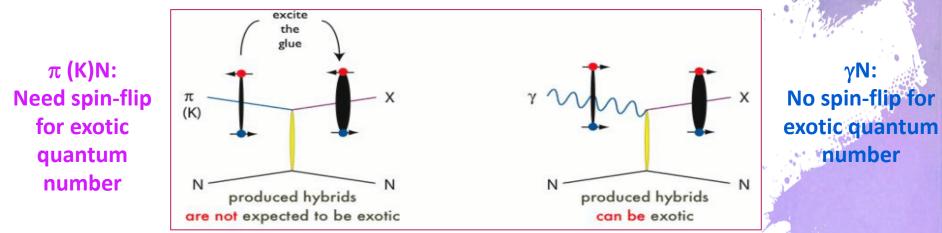
- SU(6)xO(3) symmetry respected, consistency with non-relativistic quark model expectations
- New observed states fit with LQCD predictions (many of them with larger masses)
- No parity doubling foreseen
- Some problems still unsolved!

Hybrid baryons

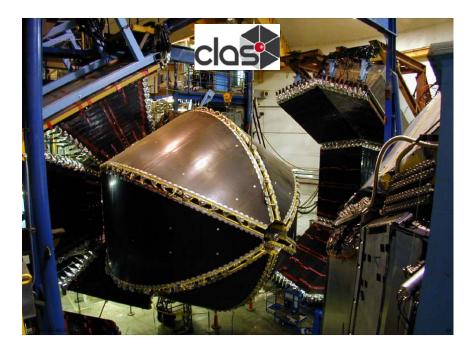
- q³G objects
 - Same quantum numbers of q³ ordinary baryons
 - More extended
- Lowest mass hybrid: expected N* state at ~2.2 GeV, J^P = ½⁺
 - A cluster of several states in the same mass region is expected $(J^P = \frac{1}{2} + and \frac{3}{2})$
- Study of transition form factors as a function of Q² to disentangle hybrids/conventional baryons production
 - Similar to what is done for the characterization of the Roper resonance

J.J. Dudek and R.G. Edwards, PR **D85** (2012) 054016

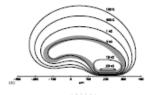

7

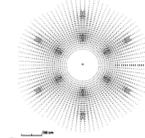

HADRON SPECTROSCOPY IN PHOTOPRODUCTION REACTIONS

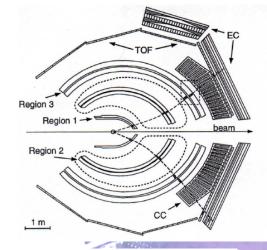
Hadron spectroscopy with e.m. probes

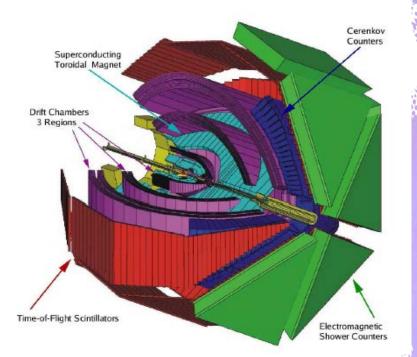

- The electromagnetic interaction is weaker than the strong one and can be calculated perturbatively with high precision (based on well-known QED)
 - Scattering: one-photon exchange approximation

 Meson photoproduction: high probability of spin-1 meson production from photons

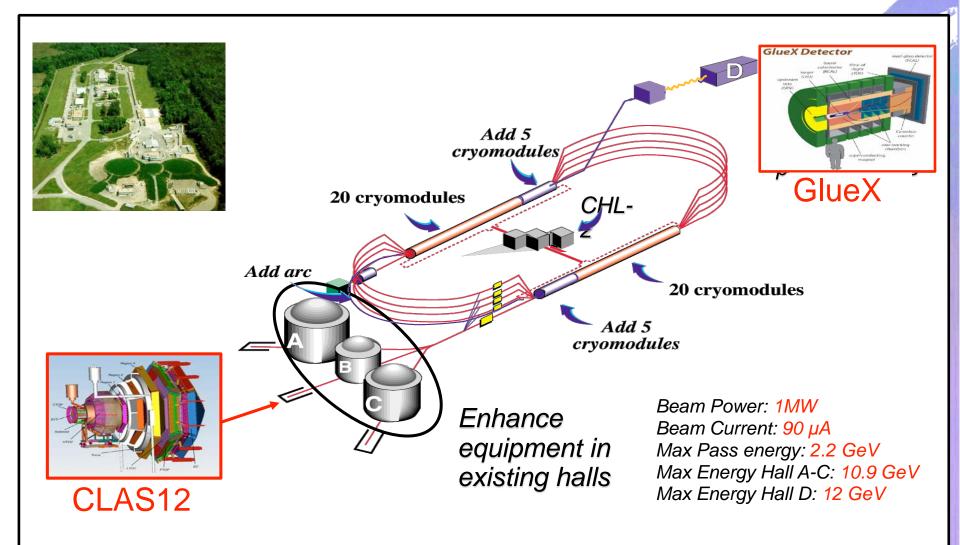


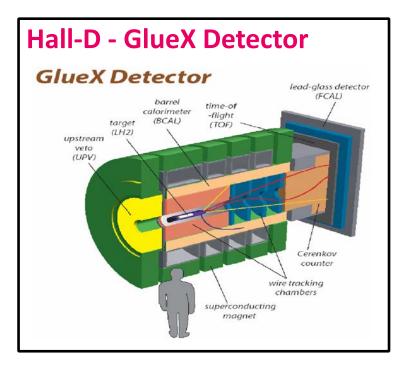

- Expected production rate for exotics and conventional mesons: comparable
- ss coupling to the photon relatively large (beam spin vector)



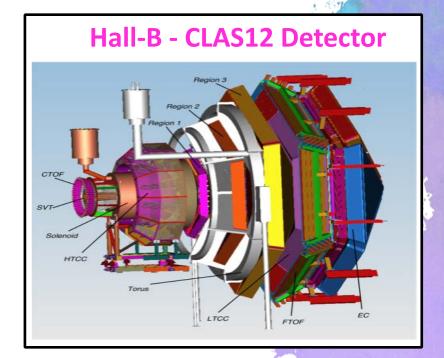


CLAS @ 6 GeV





CEBAF @12 GeV: the new electron machine at JLAB



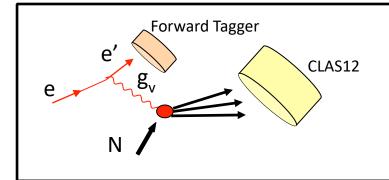
Photoproduction experiments at JLAB today

- High intensity real and virtual photon beams
- Able to measure exclusively the production reactions and the decays of the emitted particles
- Requirements:
 - Good acceptance, momentum resolution, particle id capabilities

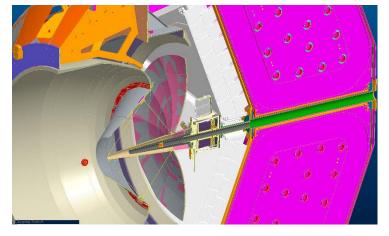
- Good hermeticity
- Uniform acceptance
- Limited resolution
- Limited pID

- Good resolution
- Good pID
- •Resonable hermeticity
- NON-Uniform acceptance

CLAS12 and The Forward Tagger


The FT installed in CLAS12

The CLAS12 detector

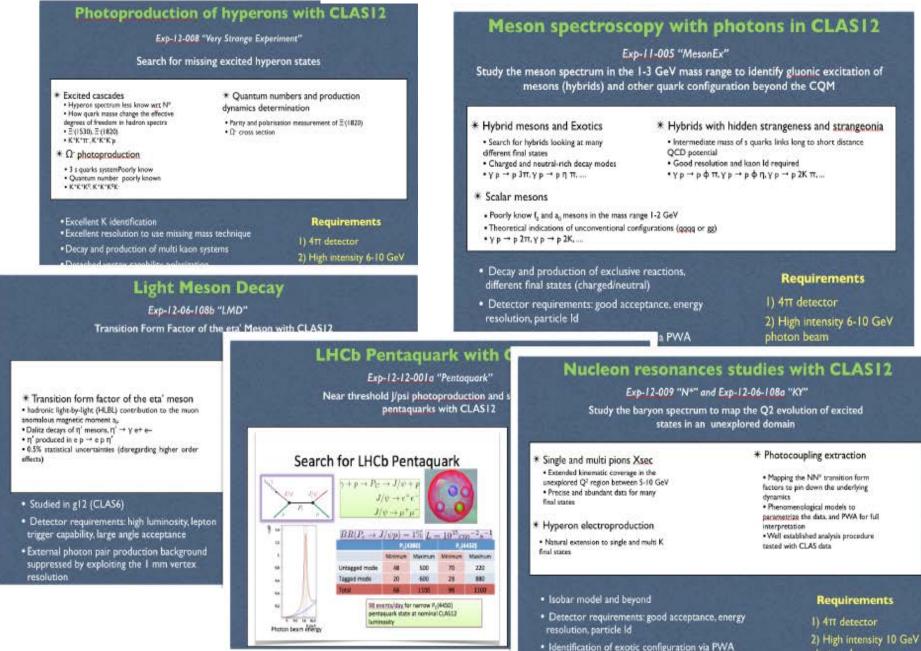


- FT-Cal: PbWO₄ calorimeter
- FT-Hodo: scintillator tiles
- FT-Tracker: MicroMegas

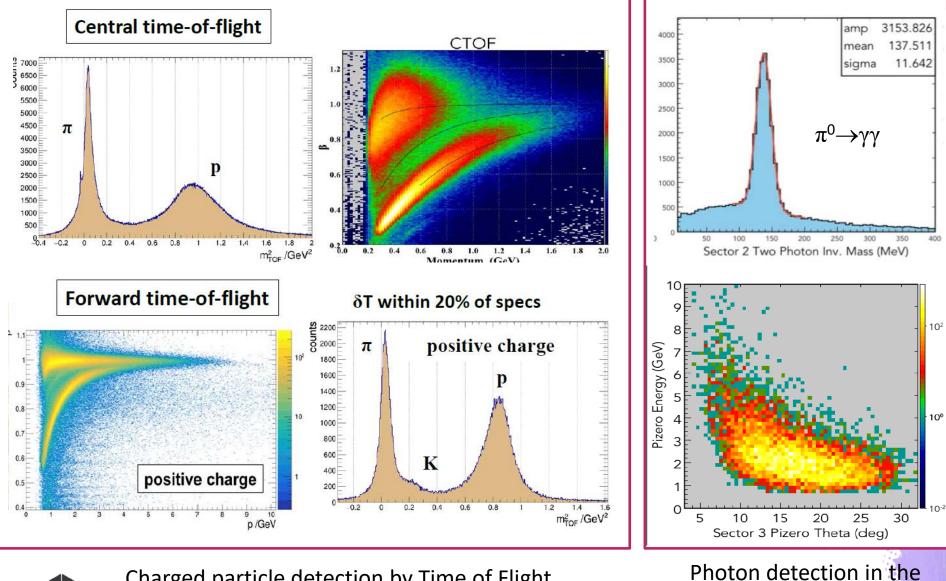
FT: low Q² quasi-real photoproduction

$E_{scattered}$	0.5 - 4.5 GeV
θ	$2.5^{o} - 4.5^{o}$
ϕ	$0^{o} - 360^{o}$
ν	6.5 - 10.5 GeV
Q^2	$0.01 - 0.3 \text{ GeV}^2 \ (< Q^2 > 0.1 \text{ GeV}^2)$
W	3.6 - 4.5 GeV

- Electron scattering at "0" deg (2.5°-4.5°)
 - Low Q^2 virtual photon \Rightarrow quasi real
- Photon tagging: detection of electron at small angles
 - High energy photons: 6.5 10.5 GeV
 - To be accomplished by a "Forward Tagger"


Quasi real photons: linearly polarized

- Polarization: 70%-10%, measured event by event
- High luminosity: $N_{\gamma} \sim 5 \times 10^8$, L $\sim 10^{35}$ cm⁻²s⁻¹ on 5 cm LH₂ target
 - Thin targets can be used



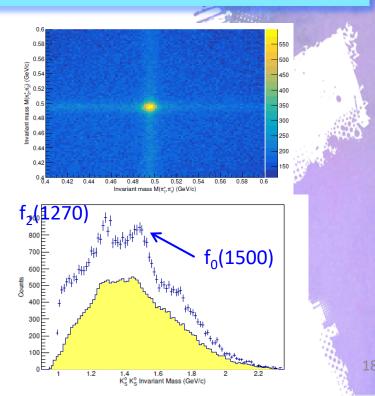
The CLAS12 hadron spectroscopy program

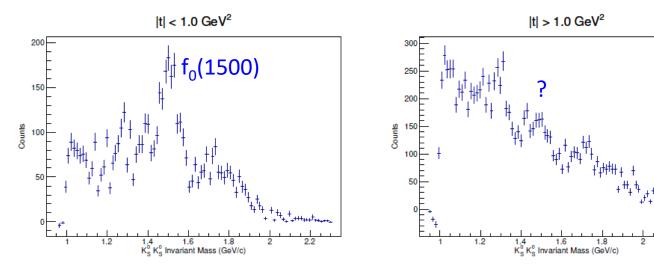
electron beam

New data with CLAS12: first performance

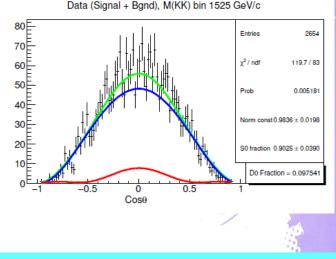
Charged particle detection by Time of Flight

Forward Calorimeter


MESON SPECTROSCOPY IN PHOTOPRODUCTION REACTIONS: EXPERIMENTAL RESULTS FROM CLAS

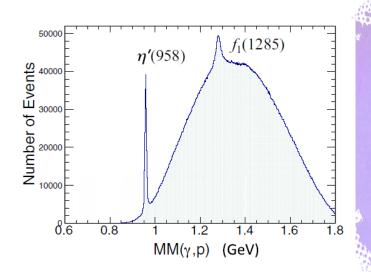

CLAS Collaboration, PRC97, 025203 (2018)

Physics case: search for a scalar glueball in its kaonic decay


- K_sK_s system: J^{PC} = (even)⁺⁺
- light scalar sector: several candidates, too many states for the nonet
 f₀(600), f₀(980), f₀(1370), f₀(1500), f₀(1700), ...
- no study yet in photoproduction reactions
- CLAS6 g12 data set:
 - $E_{\gamma} = (2.7-3) \&\& (3.1-5.1) \text{ GeV}$
 - 4π detected in CLAS, p reconstructed by missing mass
 - High correlation between K_s pairs
- Selection in t ranges
 - Low t: resonance production in t-channel
 - Wider t range for s-channel production

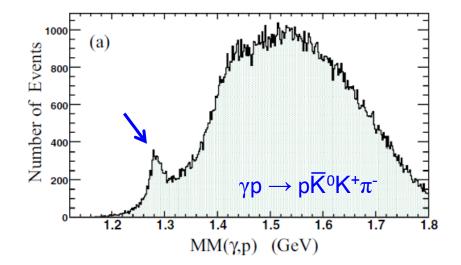
The $K_s K_s$ system: $\gamma p \rightarrow p K_s K_s$

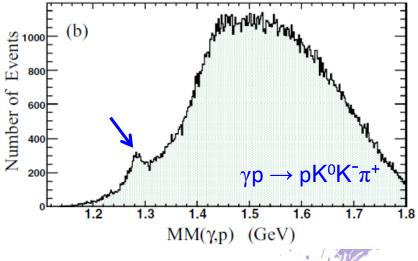
- Clean signal of f₀(1500) for |t| < 1 GeV², no indication for |t|>1 GeV²
 - t-channel process
 - Good glueball candidate??
- Low acceptance at fw/bw angle: no PW analysis possible
- Angular analysis of Gottfried-Jackson distributions, comparison with simulations
 - S-wave dominance, small D-wave contribution above 1550 MeV

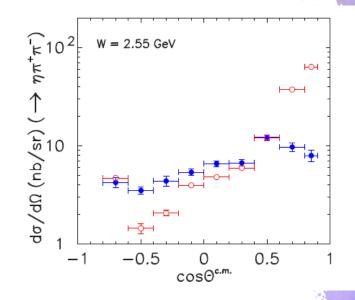


The KK π system: $\gamma p \rightarrow pK^{0}K^{\pm}\pi^{\mp}$

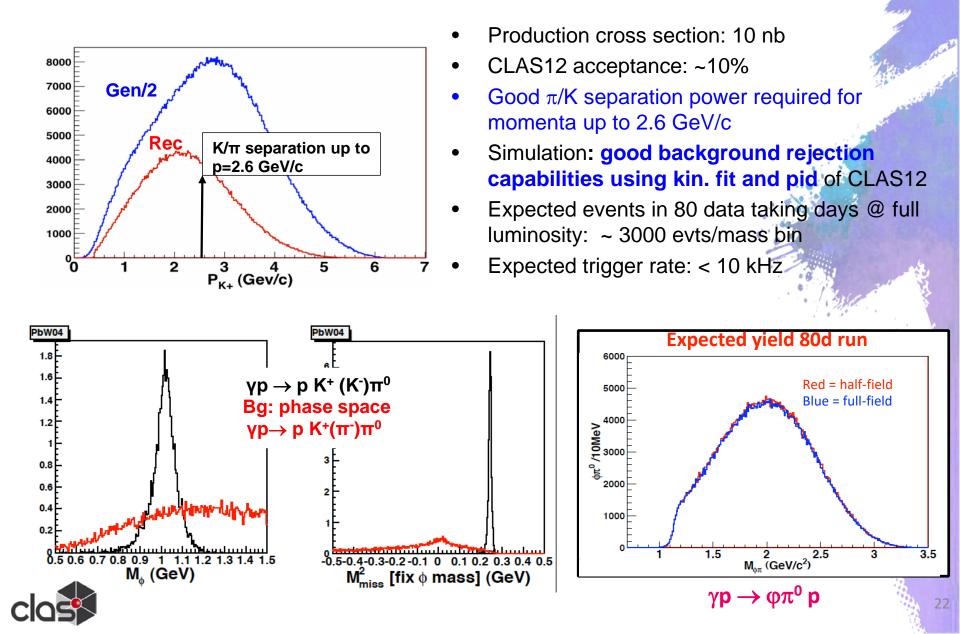
CLAS Collaboration, PRC93, 065202 (2016)


Physics case: superimposition of several axial/scalar states in the 1.3-1.5 GeV mass range with decay in $K\overline{K}\pi$


- $J^{P} = (odd)^{+} \text{ or } J^{P} = (even)^{-}$
- η -like pseudoscalars **0**⁻⁺: all of them decay to $K\overline{K}\pi$, K*K, $a_0(980)\pi$
- axial states 1++:
 - f₁(1285): not seen in K*K
 - f₁(1420): favored candidate as hybrid qq
 q
 q
 q, or 4q state, or K*K molecule
 - other: f₁(1510), isovector a₁(1420)...
- CLAS6 g11a data set:
 - $E_{\gamma} = (3-3.8) \text{ GeV}$
 - − p, K[±], π^{\mp} detected in CLAS, K⁰ from missing mass
 - Kaon identification by TOF
 - Study of the $p\pi^+\pi^-\eta$ and $p\pi^+\pi^-\gamma$ channels on the same sample

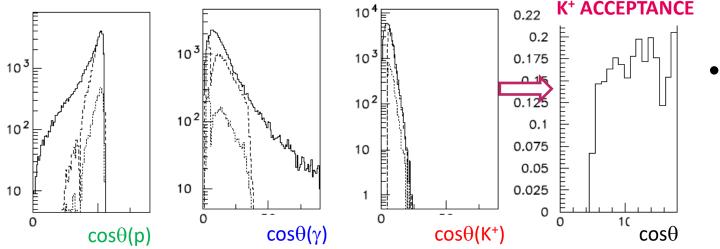

The K $\overline{K}\pi$ system: $\gamma p \rightarrow pK^{0}K^{\pm}\pi^{\mp}$

CLAS Collaboration, PRC93, 065202 (2016)



- No evidence found for higher mass η(1405), η(1470), f₁(1420), f₁(1510)
- First observation in photoproduction at ~1280 MeV, studied in $\pi^+\pi^-\eta$
 - M = (1281.0 \pm 0.8) MeV
 - Γ = (18.4 ± 1.4) MeV
 - More compatible with $f_1(1285)$ than $\eta(1295)$
 - Differential cross sections: flatter trend as compared to η (958)

Search for "new" strangeonia with CLAS12: $\gamma p \rightarrow p \phi \pi^0$

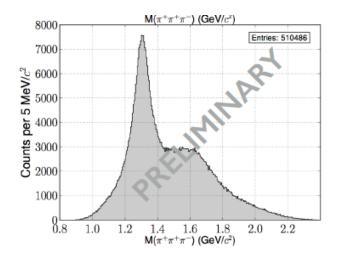


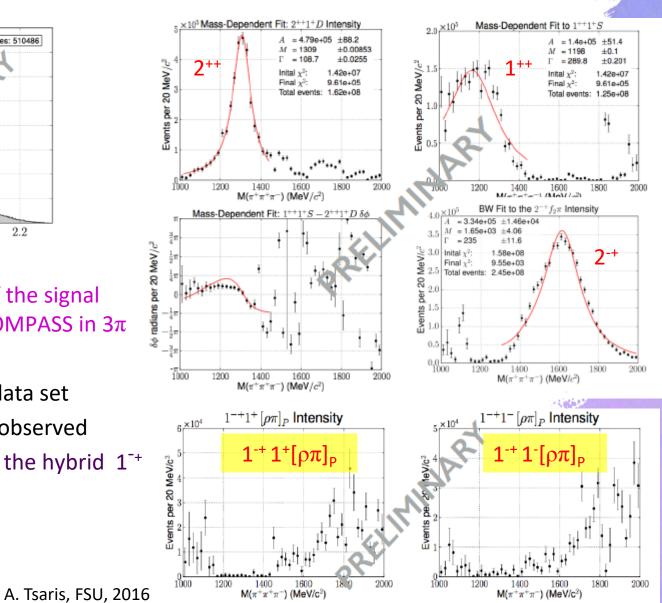
Search for "new" strangeonia with CLAS12:

- $\gamma p \rightarrow p \phi \eta$ Spectator Proton **Smoking gun** decay modes for ss states: 0^{++} **3P0 Scalar Meson Exchange** Photon / off-mass-shell ρ , ϕ , ω meson
 - $-\eta\phi$: identification of C = -1 ss candidates Small branching fraction to non-strange final states

η*φ*, η΄*φ*, *φφ*

- Acceptance evaluation of $\gamma p \rightarrow p \phi$ (1850) $\rightarrow p \eta \phi \rightarrow p K^+(K^-)_{miss} \gamma \gamma$ events with CLAS12+FT (lab emission angle distribution)
 - Good acceptance for neutrals, sizeably increased by FT calorimeter: overall acceptance > 10%

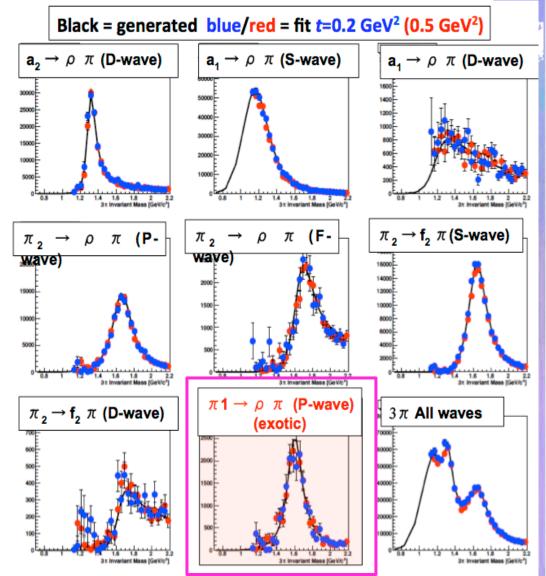

Expected cross section for strangeonia production: O(10 nb)


→ Missing Eta

 \mathbf{P}'

3π system study in CLAS

- Purpose: confirmation of the signal (hybrid?) observed by COMPASS in 3π
- First study on CLAS-g12 data set
 - Several resonances observed
 - No confirmation for the hybrid 1⁻⁺ in (ρπ) P-wave



The 3π system analysis: projections for CLAS12

- PWA analysis simulation: to what extent the detector acceptance and resolution distort the reaction mechanisms?
- Events generated using a realistic differential cross section, filtered through the full reconstruction chain, and fitting them with a set of partial waves in bins of kinematic variables (m, t)
- Benchmark reaction:

 $\gamma p \rightarrow \pi^+ \pi^+ \pi^- p$

- sum of 8 isobar channels, in S, P, D
 wave + exotic signal
- CLAS12 acceptance projected and fitted
- The results are stable against acceptance distortions
- PWA is feasible in CLAS12!

BARYON SPECTROSCOPY IN PHOTOPRODUCTION REACTIONS: EXPERIMENTAL RESULTS FROM CLAS

The updated spectrum of baryon resonances^C

- No new baryon resonances in PDG until 2010, all based on πN scattering or π photoproduction only
- Now all new photoproduction reactions results are included
- Complex multichannel models for PWA analyses exploited (Bonn-Gatchina, ...)

	Particle Data Group 2010	BnGa analyses	Particle Data Group 2012
N(1860)5/2+		*	**
N(1875)3/2-		***	***
N(1880)1/2+		**	**
N(1895)1/2-		**	**
N(1900)3/2+	**	***	***
N(2060)5/2-		***	**
N(2150)3/2-		**	**
∆(1940)3/2	*	*	**

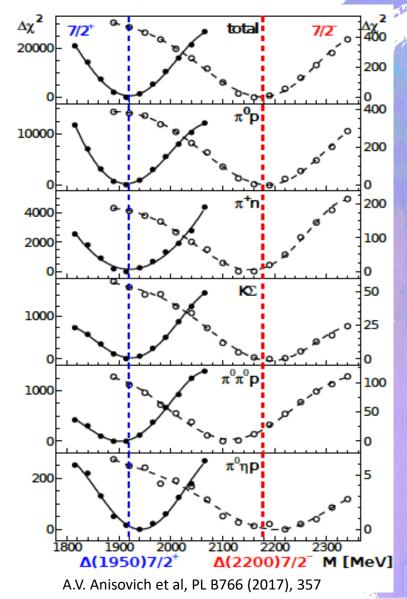
W = 2.140 - 2.200 GeV W = 1.640 - 1.660 GeV W = 1.900 - 1.940 GeV predictions 0.5 W = 2.140 - 2.200 GeV W = 1.640 - 1.660 GeV W = 1.900 - 1.940 GeV PWA fit 0 -0.5 -0.5 -0.5 0.5 -0.5 0.5 0.5 0 cos(θ) cos(θ cos(0 - SAID ST14 JüBo 2014 BnGa 2014

Study of Helicity Asymmetry E in $\gamma p \rightarrow \pi^+ n$

Many quality new data: finer binning, tighter constraints for PWA analysis

CLAS Collaboration, PLB750 (2015) 53

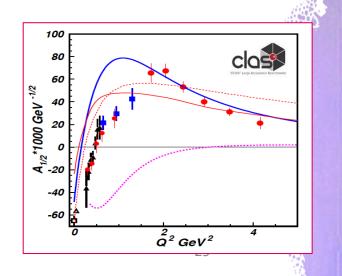
Search for parity doublets


- High mass mesons and baryons are often observed in parity doublets with the same spin, opposite parities and about the same mass
 - Chiral symmetry is restored in highly excited resonances?
 - Δ^* spectrum:

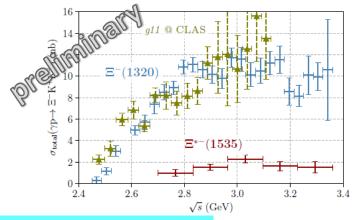
$\Delta(1910)1/2^+$	Δ(1920)3/2 ⁺
$\Delta(1900)1/2^{-1}$	∆(1940)3/2 ⁻
$\Delta(1905)5/2^+$	$\Delta(1950)7/2^+$ (****)
∆(1930)5/2-	$\Delta(2200)7/2^-$ (*)

- Evidence for $\Delta(2200) 7/2^-$ (*) from coupled-channel analysis

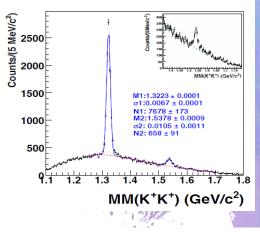
(Bn-Ga on CLAS+CBELSA /TAPS data)

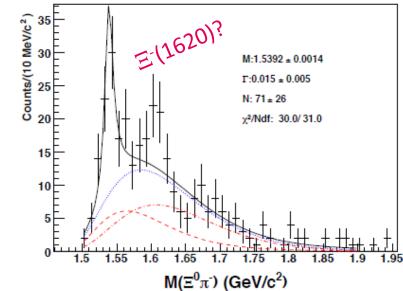

- m = 2180 MeV
- Mass, width and decay modes disprove chiral symmetry restoration

Q² evolution of the transition form factor ^{closs}

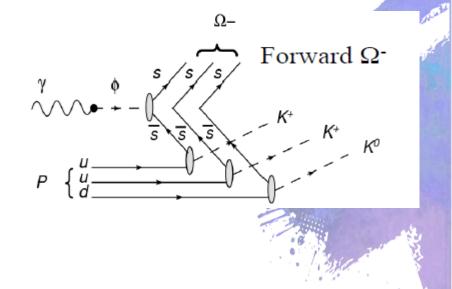

- Electroproduction can be used to explore hadron structure at different wavelengths (Q²)
- Hybrid model predictions:
 - Steeper drop in the transverse helicity amplitude A_{1/2}
 - Suppressed longitudinal amplitude S_{1/2}
- Electro-couplings of "Roper" N(1440)1/2+ 80 $A_{1/2} (10^{-3} GeV^{-1/2})$ ⁵GeV^{-1/2}) nrOM nπ⁺ 50 60 pπ⁺π⁻ F RQM 40 40 20 S_{1/2} 20 a³G 10 -20 nπ⁺ -40 0 q³G $p\pi^+\pi^-$ -10 -60 -20 -80 1 2 3 2 3 $Q^2 (GeV^2)$ $Q^2 (GeV^2)$
- Hybrid model inconsistent with experimental results
 - Internal consistency of N π and N $\pi\pi$ data
 - nrQM fails to reproduce low Q² behaviour
 - A_{1/2} changes sign and has large magnitude
 - N(1440)1/2⁺: interplay of the q³ core (first radial excitation) and the outer meson-baryon cloud

CLAS Collaboration, PRC 80, 055203 (2009) CLAS Collaboration, PRC 86, 035203 (2012)


New strange baryons at CLAS


- Study of Ξ and excited states in $\gamma p \rightarrow K^+K^+X$, $K^+K^+\pi^-X$
 - g11a run:
 - clean signals for $\Xi(1320)$ and $\Xi(1530)$, 10:1 ratio
 - g12 run:
 - total production Ξ cross section (3.5-5.4 GeV).
 - − Only Ξ(1530) significant
 - Upper limits for Ξ excitations production @90% C.L.:
 - » Ξ(1690): 0.75 nb
 - » Ξ(1820): 1.01 nb
 - » Ξ(1950): 1.58 nb

CLAS Collaboration, arXiv:1809.00074


CLAS Collaboration, PRC 76, 205208 (2007)

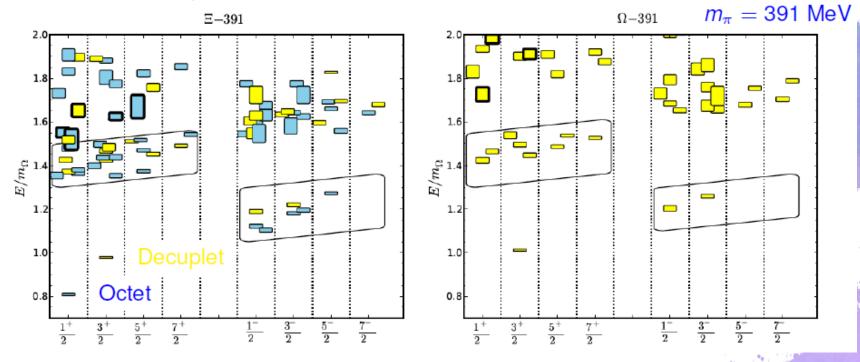
CLAS12: the "Very strange baryon" program

- Goals: high statistics measurements of Ω⁻ and Ξ excitations in photoproduction reactions
 - Strange quarks multiple production from the sea
 - Helicity asymmetries
 - Ξ^{-} polarization
 - N*, Y* excitations properties
 - Excited cascades and Ω^{-}
- Equipment: CLAS12 + Forward Tagger
- Reactions of interest:
 - $\ \gamma p \longrightarrow K^+ K^- p$
 - $\gamma p \rightarrow K^+ \Lambda \pi^0$
 - $\gamma p \rightarrow K^+ K^- \Xi^-, \, \Xi^- \rightarrow \Lambda \pi^-$

	Detected particles	Measured Decays	Overall Efficiency	Rate/hr	Total Detected
Ω^-	$K^{+}K^{+}K^{0}$		~3.9%	~3.6	$\sim 7k$
Ω-	$K^+K^+K^0K^-$	Ω^-	~0.5%	~0.5	$\sim 1k$
Ξ-	$K^+K^+\pi^-$	Ξ-	~9.3%	~440	~0.9M
Ξ ⁻ (1530)	$K^+K^+\pi^-$	Ξ-(1530)	~7.4%	~140	~270K
Ξ-(1820)	K⁺K⁺K⁻p	Ξ-(1820)Λ	~0.63%	~6	~12K

projections for 80 beam days @ half field

31

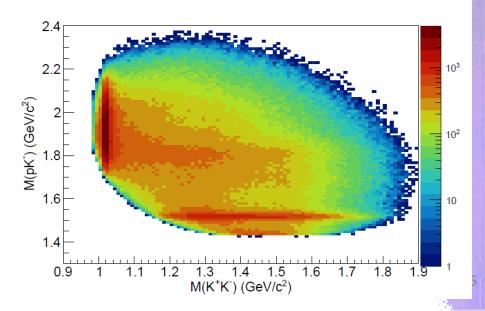

Summary and conclusions

- Still many open problems in light hadron spectroscopy
 - Mesons:
 - the scalar/pseudoscalar/axial sector
 - radial excitations with open/hidden strangeness
 - existence of exotics, ...
 - Baryons:
 - N* and Δ^* missing resonances
 - parity doublets
 - (very) strange baryons excitations
 - Baryonic hybrids and exotics
 - transition form factors, ...
- At JLAB: high intensity, linearly polarized real (by brehmsstrahlung, Hall D) and virtual (by low Q² electron scattering, Hall B) photon beams
- CLAS12: excellent PID and momentum resolution \Rightarrow high performance detector
- Abundant and high quality data expected to perform solid PW analyses ⇒ robust analysis framework (tested on older data by CLAS)
- First class quality data and results expected soon!

Backup slides

R. Edwards et al., Phys. Rev. D 87, no. 5, 054506 (2013)

- Number of expected states of each flavor and spin consistent with QM for the lowest negative and positive parity bands
- (Roughly) same features as expected from SU(6)xO(3) symmetry

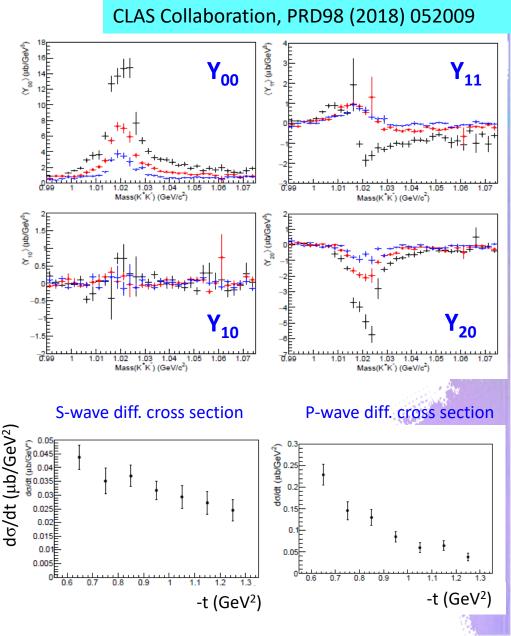


The K⁺K⁻ system: $\gamma p \rightarrow pK^+K^-$

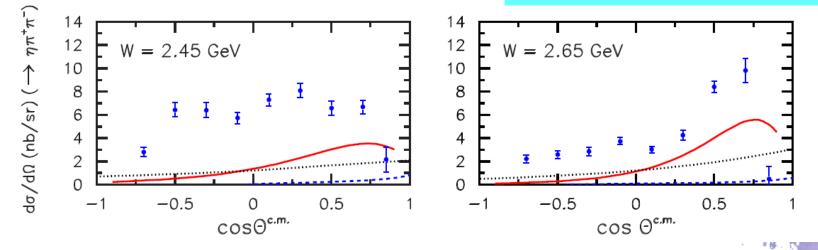
Physics case: investigation of light meson resonance spectrum

- $\phi(1020)$ main decay mode
- possible sub-threshold decay of $f_0(980)$ and $a_0(980)$ scalars
- issues: σ production? Other scalars? $f_0(980)$ coupling to $\pi\pi/K\overline{K}$?
- CLAS6 g11 data set:
 - $E_{\gamma} = (3-3.8) \text{ GeV}$
 - -t: (0.6-1.3) GeV²
 - p and K⁺ detected in CLAS, K⁻ reconstructed by missing mass
 - π/K misidentification: 10-15%
- Low mass region selected
 - m_{pK-} > 1.6 GeV
 - Baryonic resonance contributions (Λ (1520)) removed, no overlap

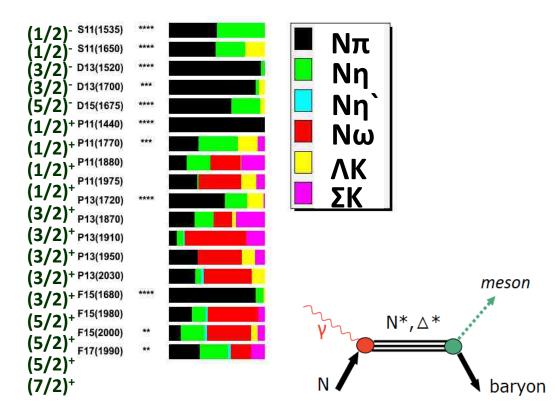
CLAS Collaboration, PRD98 (2018), 052009

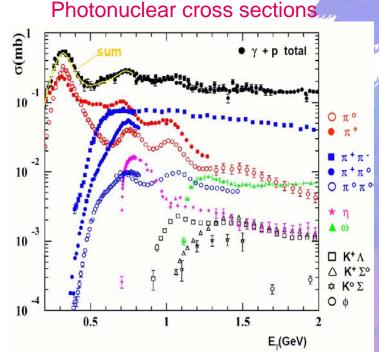

The K⁺K⁻ system: $\gamma p \rightarrow pK^+K^-$

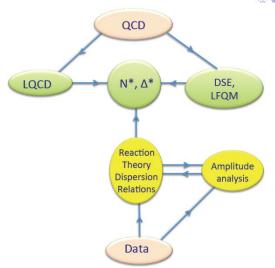
- Study of S-P wave interplay in the KK system
 - Cross-sections extraction in each partial wave through likelihood fits
- Method: moments analysis


$$\langle Y_{LM} \rangle = 4\pi \int d\Omega_K \frac{d\sigma}{dt dM_{KK} d\Omega_K} Y_{LM}(\Omega_K)$$

- Moments can be expressed as bilinear combination of partial waves, depending on L, M and photon and proton helicities
- Amplitude parameterizations:
 - S wave: ρ, ω exchange in tchannel
 - P-wave: Pomeron exchange


The K $\overline{K}\pi$ system: $\gamma p \rightarrow pK^{0}K^{\pm}\pi^{\mp}$


CLAS Collaboration, PRC93, 065202 (2016)


- Poor match of the differential cross sections with expectations from t-channel models
 - s-channel substantial contribution?
 - Dynamically produced state via s-channel involving N* excitations or KK* molecular interactions?
 - Larger support for $f_1(1285)$ identification
- First determination of the relative branching ratio: $\Gamma(K\overline{K}\pi)/\Gamma(\eta\pi\pi) = 0.216\pm0.032$
 - Consistent with PDG value : 0.171 \pm 0.013
 - Not known for η(1295)

Search for missing N* and Δ * resonances

- Necessary: precision measurements of photoproduction reactions in wide kinematic ranges and all possible channels
- Key measurements: polarization observables
- Coupled channels analysis + dispersion relations techniques to extract s-channel resonances

