

Heavy flavor spectroscopy and exotic hadrons at LHCb

Roberta Cardinale on behalf of the LHCb collaboration

WTPLF 2018 Women in Nuclear and Hadron Theoretical Physics: the last frontier Genova - 10-11 December 2018

Introduction

- Spectroscopy provides opportunities to study QCD predictions for models
- QCD predictions are quite reliable for standard hadrons (mesons and baryons)
- Many observed states still lack of interpretation: exotic states which are not fitting the standard picture
- LHCb physics program is devoted not only to precision measurements in *b*, *c* sectors but also to spectroscopy
- LHCb has produced striking results in the spectroscopy sector

The LHCb detector

Designed to study CP-violating processes and rare b- and c-hadrons decays

 $\epsilon(\mu \rightarrow \mu) \sim 97\%$ mis-ID $\epsilon(\pi \rightarrow \mu) \sim 1 - 3\%$ $\Delta E/E = 1 \oplus 10\% / \sqrt{E(\text{GeV})}$

ECAL:

Exotic spectroscopy

- The observation of states with properties inconsistent with pure $c\bar{c}$ and $b\bar{b}$ states raised the interest of the so-called exotic (non-standard) quarkonium states from both the theoretical and experimental point of view starting from the discovery of the X(3872) state
- Since then, a plethora of unexpected neutral (X, Y) and charged (Z⁺, P⁺_c) states have been discovered
- The nature and the internal structure of these states are still unclear (molecular/tightly bound): many efforts needed to uncover their nature

Exotic spectroscopy at LHCb: highlights

- LHCb made important contributions discovering new exotic states and measuring properties of known states
- X(3872): first exotic candidate discovered by Belle in 2003 [PRL 91 (2003) 262001]
 - Measurement of quantum numbers: $J^{PC} = 1^{++}$ [PRD92 (2015) 011102, PRL 110 (2013) 222001]
 - Search for new decay modes [EPJC 73 (2013) 2462, PRLB 769 (2017) 305]
 - direct production in pp collisions [EPJC 72 (2012) 1972]
 - studies of its nature [NPB 886 (2014) 665]
- Confirmation of the $Z_c(4430)^+$ charged charmonium-like state and determination of its $J^P = 1^+$ quantum numbers in $B^0 \rightarrow \psi(2S)K^+\pi^-$ decays [PRL 112 (2014) 222002, PRD92 (2015) 112009]
- Discovery of two pentaquark candidates in $\Lambda_b \rightarrow J/\psi p K^+$ decays [PRL 115 (2015) 072001, PRL 117 (2016) 082002] and evidence of pentaquark contributions in $\Lambda_b \rightarrow J/\psi p \pi^+$ decays [PRL 11 (2016) 082003]
- Neutral exotics in $B^+ \rightarrow J/\psi \phi K^+$ decays: confirmation of the X(4140) and X(4274) states and discovery of two higher mass states: X(4400) and X(4700) [PRL 118 (2016) 022003, PRD95 (2016) 012002]
- Search for weakly decaying b-flavoured pentaquarks [PRD 97 (2018) 032010]
- Search for $X_{b\bar{b}b\bar{b}} \rightarrow \Upsilon(1S)\mu^+\mu^-$ [JHEP 10 (2018) 086]

Evidence for an $\eta_c(1S)\pi^-$ resonance in $B^0\to\eta_c(1S)K^+\pi^-$ decays arXiv: 1809.07416, accepted by EPJC

$\eta_c \pi^-$ resonance in $B^0 \to \eta_c K^+ \pi^-$: motivations

- Predictions of $\eta_c \pi^-$ states depending on the model used to describe the $Z_c(3900)^-$ discovered by BESIII [PRL 110 (2013) 252001]
 - hadrocharmonium state: charged charmonium-like state of mass $\sim 3800\,{
 m MeV}$ [PRD87 (2013) 091501]
 - $\bullet\,$ quarkonium hybrids: prediction of states with quantum numbers allowing the decay into the $\eta_c\pi^-$ system
- Using the diquark model: a $J^P = 0^+$ exotic candidate below the open-charm threshold decaying to $\eta_c \pi^-$ [PRD71 (2005) 014028]

Search for possible exotic states in the $\eta_c\pi^-$ invariant mass using $B^0\to \eta_c K^+\pi^- \mbox{ decays}$

$B^0 \rightarrow \eta_c(1S) K^+ \pi^-$: analysis strategy

- Using $L \sim 4.7 \, {\rm fb}^{-1}$, Run1+Run2 data (2011-2016)
- η_c reconstructed in $p\bar{p}$ final state
- isolate $B^0 \to \eta_c K^+ \pi^-$ signal candidates from non-resonant $B^0 \to p\bar{p}K^+\pi^-$ and combinatorial background candidates
- Perform a Dalitz plot (DP) analysis to search for exotic hadrons: the $B^0 \rightarrow \eta_c(1S)K^+\pi^-$ decay involves only pseudo-scalar particles (fully described by only two independent kinematic quanties)
- Isobar model used to write the decay amplitude: $K^+\pi^-$ S-wave at low mass parametrised using the LASS PDF, Breit Wigner PDFs for the other $K^+\pi^-$ resonances

$B^0 \rightarrow \eta_c(1S) K^+ \pi^-$: signal

- 2D fit to $m(p\bar{p}K^+\pi^-)$ and $m(p\bar{p})$ distributions
- to subtract non-resonant $B^0 \to p \bar{p} K^+ \pi^-$ and combinatorial background candidates
- fitting separetely Run1 and Run2 data

Component	$\operatorname{Run}1$	$\operatorname{Run} 2$
$B^0 \rightarrow \eta_c K^+ \pi^-$ $B^0 \rightarrow p \overline{p} K^+ \pi^-$ (NR)	805 ± 48 234 ± 48	$ \begin{array}{r} 1065 \pm 56 \\ 273 \pm 56 \end{array} $
Combinatorial background	409 ± 36	498 ± 41

Dalitz plot analysis

- Background: use sPlot technique to get the nonresonant and combinatorial background distributions (included in the amplitude fit)
- Efficiency:
 - variation caused by the detector acceptance and selection procedure
 - parametrisation using re-weighted simulated samples
- Baseline model includes 6 K^{*0} resonances + K⁺π⁻ NR (mass and width of each K^{*} resonance are fixed)

Resonance	$\mathrm{Mass}\;[\mathrm{MeV}]$	Width $[MeV]$	J^P	Model
$K^{*}(892)^{0}$	895.55 ± 0.20	47.3 ± 0.5	1-	RBW
$K^*(1410)^0$	1414 ± 15	232 ± 21	1^{-}	RBW
$K_0^*(1430)^0$	1425 ± 50	270 ± 80	0^{+}	LASS
$K_2^*(1430)^0$	1432.4 ± 1.3	109 ± 5	2^{+}	RBW
$K^*(1680)^0$	1717 ± 27	322 ± 110	1^{-}	RBW
$K_0^*(1950)^0$	1945 ± 22	201 ± 90	0^{+}	RBW

Model with only $K^+\pi^-$ contributions

Model with $K^+\pi^- + \eta_c(1S)\pi^-$ contributions

Evidence for an exotic $Z_c(4100)^-$

- Adding a Z_c^- resonance improves the fit of $\Delta(2ln\mathcal{L}) = 22.8$, 41.4 and 7.0 for $J^P = 0^+$, 1^- and 2^+ .
- Resonance parameters:

$$\begin{split} m_{Z_c^-} &= 4096 \pm 20^{+18}_{-22} \, \mathrm{MeV} \\ \Gamma_{Z_c^-} 152 \pm 58^{+60}_{-35} \, \mathrm{MeV} \end{split}$$

- Fit fraction of the $Z_c^-\colon 3.3\pm 1.1^{+1.2}_{-1.1}\%$
- $\mathcal{B}(B^0 \to Z_c(4100)^- K^+) = 1.89 \pm 0.64 \pm 0.04^{+0.69}_{-0.63} \pm 0.22$ (statistical, branching fraction systematic, fit fraction systematic, external branching fractions uncertainties)
- $\bullet~{\rm Significance}$ is 3.2σ after considering systematic uncertainties
- Discrimination between $J^P = 0^+$ and $J^P = 1^-$ is not significant

Conventional spectroscopy in the bottom and charm sector at LHCb

Doubly-charmed baryons [PRL 119 (2017) 112001, PRL 121 (2018) 162002]

• Doubly charmed baryons: unique environment for testing models of QCD

$$\begin{split} &m(\Xi_c^{++}) = 3621.40 \pm 0.72(stat) \pm 0.31(syst) \,\,\mathrm{MeV/c^2} \,\, [\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^-] \\ &m(\Xi_c^{++}) = 3620.6 \pm 1.5(stat) \pm 0.4(syst) \pm 0.3(\Xi_c^+) \,\,\mathrm{MeV/c^2} \,\, [\Xi_{cc}^{++} \to \Xi_c^+ \pi^+] \\ &m(\Xi_c^{++}) = 3621.24 \pm 0.65(stat) \pm 0.31(syst) \,\,\mathrm{MeV/c^2} \,\, [\mathrm{combined}] \end{split}$$

consistent with theoretical range of predictions, not consistent with Ξ_{cc}^+ SELEX measurement (100 MeV above SELEX Ξ_{cc}^+ peaks)

$$\tau_{\Xi_{cc}^{++}} = 0.256^{+0.224}_{-0.022}(stat) \pm 0.014(syst) \,\mathrm{ps}$$

• Many studies of other Ξ_{cc}^{++} decay modes and properties (production mechanism, ...) and search for other doubly-charmed baryon states

Bottom spectroscopy

- LHCb has a unique capability to search for excited states of beauty hadrons
- Already a number have been discovered $(\Lambda_b(5912)^0, \Lambda_b(5920)^0, \Sigma_b^{*\pm}, \Xi_b'(5935)^-, \Xi_b^*(5955)^-$ and $\Xi_b(5945)^0)$
- Recently LHCb observed a new Ξ_b^{**-} state, the $\Xi_b(6227)^-$ [PRL 121 (2018) 072002] in both fully hadronic $(\Lambda_b^0 \to \Lambda_c^+ \pi^-)$ and semileptonic $(\Lambda_b^0 \to \Lambda_c^+ \mu^- X, \Xi_b^0 \to \Lambda_c^+ \mu^- X)$ decays measuring its mass, width and production ratios
- Consistent with expectations of either a \(\mathcal{E}_b(1P)\) and \(\mathcal{E}_b(2S)\) states
- J^P not yet measured to distinguish between the states

Observation of $\Sigma_b(6097)^{\pm}$ [arXiv:1809.07752, Submitted to PRL]

- $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ combined with π^{\pm} from PV
- *p*_T(π[±]) > 1 GeV to suppress background
- Structures found in the $\Lambda_b^0 \pi^{\pm}$ invariant mass spectra: $\Sigma_b (6097)^{\pm}$
- $\Sigma_b(6097)$ compatible with 1P state

Quantity	Value [MeV]
$m(\Sigma_b(6097)^-)$	$6098.0 \pm 1.7 \pm 0.5$
$m(\Sigma_b(6097)^+)$	$6095.8 \pm \ 1.7 \ \pm \ 0.4$
$\Gamma(\Sigma_b(6097)^-)$	$28.9 \pm 4.2 \pm 0.9$
$\Gamma(\Sigma_b(6097)^+)$	$31.0\pm~5.5~\pm~0.7$

• Measured mass and width of the Σ_b^{\pm} and $\Sigma_b^{*\pm}$ states: compatible and 5 times more precise than CDF measurement

Conclusions

• Spectroscopy is an essential part of the LHCb physics programme

- Study of exotic states
- Observation of doubly charmed baryons
- Study of excited b hadrons
- Continuing to exploit LHCb potential adding Run2 data
 - Updates of present analyses with higher stats, precision measurements
 - More amplitude analysis
 - Exotic states searches in other decay channels
- The LHCb detector is going to be upgraded: collect a larger data sample with high efficiency!

Spare slides

A new Ξ_b^{**-} state! [PRL 121 (2018) 072002]

- LHCb has a unique capability to search for excited states of beauty hadrons
- Already a number have been discovered $(\Lambda_b(5912)^0, \Lambda_b(5920)^0, \Sigma_b^{*\pm}, \Xi_b'(5935)^-, \Xi_b^*(5955)^-$ and $\Xi_b(5945)^0)$
- Dataset: 1.0 fb^{-1} at $7 \text{ TeV} + 2.0 \text{ fb}^{-1}$ at $8 \text{ TeV} + 1.5 \text{ fb}^{-1}$ at 13 TeV
- A new \(\mathcal{Z}_b^{**-}\) state seen in both fully hadronic and semileptonic (SL) decays
 - Hadronic $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ with resolution $2 \,\mathrm{MeV}, \ 7.9\sigma$
 - SL $\Lambda_b^0 \rightarrow \Lambda_c^+ \mu^- X$ with resolution 18 MeV, $\times 15$ yield, 25σ

• SL
$$\Xi_b^0 \to \Lambda_c^+ \mu^- X$$
, 9.2 σ

A new Ξ_b^{**-} state! [PRL 121 (2018) 072002]

• With hadronic mode:

$$\begin{split} m_{\Xi_b(6227)^-} &- m_{A_b^0} = 607.3 \pm 2.0 \,(\text{stat}) \pm 0.3 \,(\text{syst}) \,\text{MeV}/c^2, \\ \Gamma_{\Xi_b(6227)^-} &= 18.1 \pm 5.4 \,(\text{stat}) \pm 1.8 \,(\text{syst}) \,\text{MeV}/c^2, \\ m_{\Xi_b(6227)^-} &= 6226.9 \pm 2.0 \,(\text{stat}) \pm 0.3 \,(\text{syst}) \pm 0.2 (A_b^0) \,\text{MeV}/c^2, \end{split}$$

• Production ratios are also measured with SL modes

Quantity $[10^{-3}]$	$7+8{ m TeV}$	$13{ m TeV}$
$(\sigma_{\Xi_b^{**-}}/\sigma_{\Lambda_b^0})\mathcal{B}(\Xi_b^{**-}\to\Lambda_b^0K^-)$	$3.0\pm0.3\pm0.4$	$3.4\pm0.3\pm0.4$
$(\sigma_{\Xi_b^{**-}}/\sigma_{\Xi_b^0})\mathcal{B}(\Xi_b^{**-}\to\Xi_b^0\pi^-)$	$47\pm10\pm7$	$22\pm 6\pm 3$

- Consistent with expectations of either a $\Xi_b(1P)$ and $\Xi_b(2S)$ states
- J^P not yet measured to distinguish between the states

Ξ_{cc} system

- Doubly charmed baryons predicted by quark model
- Theoretical predictions of Ξ_{cc}^{++} mass are between 3.5-3.7 GeV/c² [PRD70 (2004) 094004, PRD73 (2006) 094022, PRD78 (2008) 094007, EPJA37 (2008) 217, E2PJA45 (2010) 267,...] close to Ξ_{cc}^{+-}
- Different theoretical predictions are available also for the lifetime showing a large ambiguity: 150 - 1550 fs [PRD60 (1999) 014007, EPJC9(1999) 213, PRD66(2002) 014007, PRD90 (2014) 094007, ...]
- Ξ⁺_{cc} state observed by SELEX experiment [PRL 89 (2002) 112001, PRL97 (2006) 162001]:
 - $M = 3518.7 \pm 1.7 \,\mathrm{MeV}$
 - Unexpected short lifetime: $\tau < 33 \, {\rm fs}$ @ 90% CL
- Not confirmed by Focus [Nucl.Phys.Proc.Suppl 115 (2003)33], BaBar [PRD 74 (2006) 011103], Belle [PRL 97(2006) 162001] nor LHCb [JHEP 12 (2013) 090]

Observation of Ξ_{cc}^{++} [PRL 119 (2017) 112001, PRL 121 (2018) 162002]

- Search in LHCb using $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^-$ and $\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$
- Data sample: 1.7 fb⁻¹ at 13 TeV (2016) [Run2]

Mass measurements:

 $\begin{array}{l} m(\Xi_c^{++}) = 3621.40 \pm 0.72(stat) \pm 0.31(syst) \, \mathrm{MeV/c^2} \, [\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^-] \\ m(\Xi_c^{++}) = 3620.6 \pm 1.5(stat) \pm 0.4(syst) \pm 0.3(\Xi_c^+) \, \mathrm{MeV/c^2} \, [\Xi_{cc}^{++} \to \Xi_c^+ \pi^+] \\ m(\Xi_c^{++}) = 3621.24 \pm 0.65(stat) \pm 0.31(syst) \, \mathrm{MeV/c^2} \, [\mathrm{combined}] \end{array}$

consistent with theoretical range of predictions, not consistent with Ξ_{cc}^+ SELEX measurement (100 MeV above SELEX Ξ_{cc}^+ peaks)

	Roberta	Cardinale	WTPLF 2018	23
_				

Lifetime measurement [PRL 121 (2018) 152002]

- Measuring its lifetime is crucial to establish the weak nature of its decay and for comparison with theoretical predictions
- Using the $\Xi_c^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ decay relative to the control channel $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$ (~ 1.7 fb⁻¹ 13 TeV)

• Unbinned maximum likelihood fit of the background-subtracted Ξ_{cc}^{++} decay time distribution

 Many studies of other \(\frac{+}{cc}\)⁺ decay modes and properties (production mechanism, ...) and search for other doubly-charmed baryon states

Interpretations of exotic hadrons

• Different models have been proposed about the quark composition and binding mechanisms of these exotic hadrons

Meson-meson molecule

Hadroquarkonium

Glueball

Hybrid meson

Predictions of a $\eta_c \pi^-$ exotic state

- Z_c(3900)⁻ as hadrocharmonium state (where the compact heavy quark-antiquark pair interacts with the surrounding light quark mesonic excitation by a QCD analogue of the van der Waals force): predicts an as-yet-unobserved charged charmonium-like state with a mass of approximately 3800 MeV whose dominant decay mode is to the η_cπ⁻ system
- $Z_c(3900)^-$ as quarkonium hybrids where the excitation of the gluon field (the valence gluon) is replaced by an isospin-1 excitation of the gluon and light-quark fields
 - prediction of different multiplets of charmonium tetraquarks, comprising states with quantum numbers allowing the decay into the $\eta_c \pi^-$ system.
 - The $\eta_c \pi^-$ system carries isospin I = 1, G-parity G = 1, spin J = L and parity $P = (-1)^L$, where L is the orbital angular momentum between the η_c and the π^- mesons. Lattice QCD calculations predict the mass and quantum numbers of these states, comprising a $I^G(J^P) = 1(0^+)$ state of mass 4025 ± 49 MeV, a $I^G(J^P) = 1^-(1^-)$ state of mass 3770 ± 42 MeV, and a $I^G(J^P) = 1^-(2^+)$ state of mass 4045 ± 44 MeV. The $Z_c(4430)$ resonance, discovered by the Belle collaboration and confirmed by LHCb, could also fit into this scenario.
- Diquark model: a $J^P=0^+$ exotic candidate below the open-charm threshold decaying to $\eta_c\pi^-$

$\Sigma_b(6097)$ interpretation

Bing Chen et. al. PRD 98 (2018) 031502(R)

Search for weakly decaying b-flavoured pentaquarks

[PRD 97 (2018) 032010]

• Measurement of the production ratio with respect to $\Lambda_b^0 \rightarrow J/\psi p K^-$ measured by LHCb

Search for dibaryon states

[LHCb-PAPER-2018-005, arXiv:1804.09617, submitted to PLB]

- Search for the lightest charmed dibaryon $D_c^+ = [cd][ud][ud]$ with a mass below 4682 MeV in $\Lambda_b^0 \rightarrow \bar{p}D_c^+$ decays
- The D_c^+ dibaryon decay could proceed via quark rearrangement to the final state $p\Sigma_c^0$ with $\Sigma_c^0 \rightarrow \Lambda_c^+ \pi^-$ or via a lighter pentaquark state $P_c(\bar{u}[cd][ud])p$

• LHCb observed for the first time the $\Lambda_b \to \Lambda_c^+ p \bar{p} \pi^-$ decay using $3 \, \text{fb}^{-1}$ of data Resonance contributions in $\Lambda_c^+\pi^-$ Candidates / (4 MeV/c² 200 LHCb Data Total Candidates / (3 MeV/c² LHCb $\cdots A^{0}_{+} \rightarrow A^{+}_{-} p \overline{p} \pi^{-}$ ····· Background 100 30 20F 5550 5600 5650 5700 $m(\Lambda_c^+ p \overline{p} \pi^-)$ [MeV/c²] 2500 2600 $m(\Lambda_c^+\pi^-)$ [MeV/c²] $N_{\Lambda^0_r \to \Lambda^+_c p \bar{p} \pi^-} = 926 \pm 43$ $N_{\Lambda_{1}^{0} \to \Sigma_{2}^{0} p \bar{p}} = 59 \pm 10 \ N_{\Lambda_{1}^{0} \to \Sigma_{2}^{*0} p \bar{p}} = 104 \pm 17$ Roberta Cardinale **WTPLF 2018** 29

Search for dibaryon states

[LHCb-PAPER-2018-005, arXiv:1804.09617, submitted to PLB]

• Measurements of branching ratio: $\frac{\mathcal{B}(\Lambda_b \to \Lambda_c^+ p \bar{p} \pi^-)}{\mathcal{B}(\Lambda_b \to \Lambda_c^+ \pi^-)} = 0.0540 \pm 0.0023 \pm 0.0032$ $\frac{\mathcal{B}(\Lambda_b \to \Sigma_c^0 (\to \Lambda_c^+ \pi^-) p \bar{p} \pi^-)}{\mathcal{B}(\Lambda_b \to \Lambda_c^+ p \bar{p} \pi^-)} = 0.089 \pm 0.015 \pm 0.006$ $\frac{\mathcal{B}(\Lambda_b \to \Sigma_c^{*0} (\to \Lambda_c^+ \pi^-) p \bar{p} \pi^-)}{\mathcal{B}(\Lambda_b \to \Lambda_c^+ p \bar{p} \pi^-)} = 0.119 \pm 0.020 \pm 0.014$

• No dibaryon peak in $m_{\Lambda_c^+\pi^-p}$ spectrum

Roberta Cardinale WTPLF 2018

Search for beautiful tetraquarks in the $\Upsilon(1S)\mu^+\mu^-$ invariant mass spectrum

[LHCb-PAPER-2018-027, preliminary]

- Search for a possible exotic meson state composed of two b and two \bar{b} quarks: $X_{bb\bar{b}\bar{b}}$
- Several predictions for the mass and width of an exotic X_{bbbb} state [PRD86 (2012) 034004, PLB773 (2017) 247, PRD95 (2017) 034011, EPJC77 (2017) 432, ...]
- It should have mass around $18.4\text{-}18.8\,\mathrm{GeV/c^2},$ below the $2m_{\eta_b}$ threshold, meaning that it can decay to $\Upsilon\ell^+\ell^-$
- Data sample: $6.0 \,\mathrm{fb}^{-1}$ at $\sqrt{s} = 7, 8$ and $13 \,\mathrm{TeV}$
- No significant excess is seen for any mass hypothesis in the range [17.5, 20.0] GeV/c²
- Set upper limits on
 $$\begin{split} &\sigma(pp\to X_{b\bar{b}b\bar{b}})\times\mathcal{B}(X_{b\bar{b}b\bar{b}}\to \\ &\Upsilon(1S)\mu^+\mu^-)\times\mathcal{B}(\Upsilon(1S)\to\mu^+\mu^-) \\ &\text{ normalising to }\Upsilon(1S)\to\mu^+\mu^- \text{ decay channel} \end{split}$$

Parametrisation of the backgrounds

- Is select technique from the joint 2D m(pp̄K⁺π[−]), m(pp̄) fit is used to extract combinatorial and NR background histograms
- Smoothing procedure using a 2D cubic spline interpolation
- Parametrised using the Square Dalitz plot (SDP) using the variables $m^{'}$ and $\theta^{'}$ defined in the range 0 to 1 and given by

$$m' \equiv \frac{1}{\pi} \arccos(2\frac{m(K^+\pi^-) - m_{K^+\pi^-}^{\min}}{m_{K^+\pi^-}^{\max} - m_{K^+\pi^-}^{\min}} - 1) \qquad \qquad \theta' \equiv \frac{1}{\pi}\theta(K^+\pi^-)$$

where $m_{K^+\pi^-}^{\max} = m_{B^0} - m_{\eta_c}$, $m_{K^+\pi^-}^{\min} = m_{K^+} + m_{\pi^-}$ and $\theta(K^+\pi^-)$ is the helicity angle of the $K^+\pi^-$ system (the angle between the K^+ and the η_c mesons in the $K^+\pi^-$ rest frame

Efficiency

- Efficiency variation across the SDP caused by the detector acceptance and by the trigger and offline selection requirements
- Evaluated with simulated samples generated uniformly across the SDP.
- Corrections are applied for known differences between data and simulation
- Efficiency studied separately for the Run1 and Run2 subsamples
- Smoothing procedure using a 2D cubic spline interpolation

Cross-checks

- No significant improvement adding further high-mass K^{*0} states $(K_3^*(1780)^0, K_4^*(2045)^0)$, the high mass $K_5^*(2380)^0$ which falls outside the phase space limits, the $K_2^*(1980)^0$ which has not been seen in the $K^+\pi^-$ final state thus far and the unestablished P-, D- and F-wave $K^+\pi^-$ states predicted by the Godfreylsgur model)
- No significant additional amplitude decaying to $\eta_c \pi^-$
- No significant additional exotic amplitude decaying to $\eta_c K^+$
- Noegligible effect due to the variation of the η_c phase due to the sizeable natural width introducing interference effects with the NR $p\bar{p}$ contribution [data sample is divided in two, containing candidates with masses below and above the η_c meson peak]

Quasi-two-body branching fractions

Amplitude	Fit fraction $(\%)$
$B^0 \to \eta_c K^* (892)^0$	$51.4 \pm 1.9 \ ^{+1.7}_{-4.8}$
$B^0 \rightarrow \eta_c K^* (1410)^0$	$2.1 \pm 1.1 {}^{+1.1}_{-1.1}$
$B^0 \to \eta_c K^+ \pi^- (\text{NR})$	$10.3 \pm 1.4 \ ^{+1.0}_{-1.2}$
$B^0 \to \eta_c K_0^* (1430)^0$	$25.3 \pm 3.5 \ {}^{+3.5}_{-2.8}$
$B^0 \to \eta_c K_2^* (1430)^0$	$4.1 \pm 1.5 \ ^{+1.0}_{-1.6}$
$B^0 \rightarrow \eta_c K^* (1680)^0$	$2.2 \pm 2.0 \ ^{+1.5}_{-1.7}$
$B^0 \to \eta_c K_0^* (1950)^0$	$3.8 \pm 1.8 \ ^{+1.4}_{-2.5}$
$B^0 \to Z_c(4100)^- K^+$	$3.3 \pm 1.1 \ ^{+1.2}_{-1.1}$

Decay mode	Branching fraction (10^{-5})
$B^0 \to \eta_c K^* (892)^0$	$29.5 \pm 1.6 \pm 0.6 {+1.0 \atop -2.8} \pm 3.4$
$B^0 \rightarrow \eta_c K^* (1410)^0$	$1.20 \pm 0.63 \pm 0.02 \pm 0.63 \pm 0.14$
$B^0 \to \eta_c K^+ \pi^- (\text{NR})$	$5.90 \pm 0.84 \pm 0.11 {}^{+0.57}_{-0.69} \pm 0.68$
$B^0 \to \eta_c K_0^* (1430)^0$	$14.50 \pm 2.10 \pm 0.28 \ ^{+2.01}_{-1.60} \ \pm 1.67$
$B^0 \to \eta_c K_2^* (1430)^0$	$2.35 \pm 0.87 \pm 0.05 \ \substack{+0.57 \\ -0.92} \ \pm 0.27$
$B^0 \to \eta_c K^* (1680)^0$	$1.26 \pm 1.15 \pm 0.02 \ ^{+0.86}_{-0.97} \ \pm 0.15$
$B^0 \to \eta_c K_0^* (1950)^0$	$2.18 \pm 1.04 \pm 0.04 \ ^{+0.80}_{-1.43} \ \pm 0.25$
$B^0 \to Z_c(4100)^- K^+$	$1.89 \pm 0.64 \pm 0.04 {}^{+0.69}_{-0.63} \pm 0.22$

Width of the $\eta_c(1S)$

- Necessary to take into account the sizeable natural width of the $\eta_c(1S)$ meson ($\Gamma \sim 32 \,\mathrm{MeV}$):
 - Kinematic quantities such as $m^2(K^+\pi^-)$, $m^2(\eta_c\pi^-)$ and the helicity ancles are calculated using the invariant mass $m(p\bar{p})$ instead of the known value of the η_c mass
 - When computing the DP normalisation the width of the η_c meson is set to zero: the effect of this simplification is determined when assessing the systematic uncertainties
 - Amplitude fits are repeated computing the DP normalisations by using the $m_{\eta_c}+\Gamma_{\eta_c}$ and $m_{\eta_c}-\Gamma_{\eta_c}$

LASS model

- The amplitude parametrisations using RBW functions lead to unitarity violation within the isobar model if there are overlapping resonances or if there is a significant interference with a NR component, both in the same partial wave
- For the K⁺π S-wave at low K⁺π mass, where the K₀(1430)⁰ resonance interferes strongly with a slowly varying NR S-wave component: LASS lineshape

$$T(m) = \frac{m}{|\vec{q}| \cot \delta_B - i|\vec{q}|} + e^{2i\delta_B} \frac{m_0 \Gamma_0 \frac{m_0}{q_0}}{m_0^2 - m^2 - im_0 \Gamma_0 \frac{|\vec{q}|}{m} \frac{m_0}{q_0}}$$
$$\cot \delta_B = \frac{1}{a|\vec{q}|} + \frac{1}{2}r|\vec{q}|$$

and where m_0 and Γ_0 are the pole mass and width of the $K_0(1430)^0$ state, and a and r are the scattering length and the effective range, respectively.

• The LASS model replaced with $K_0^*(1430)^0$ and $K_0^*(800)^0$ resonances parametrised with RBW functions, and a NR S-wave $K^+\pi^-$ component parametrised with a uniform amplitude within the DP.

Systematic uncertainties

Experimental uncertainties

- Fixed signal and background yields
- background parametrisation
- phase-space border veto applied on the parametrisation of the efficiencies
- amplitude fit bias

- Model uncertainties
 - treatment of the $\eta_c(1S)$ natural width
 - $K^+\pi^-$ s-wave parametrisation
 - fixed parameters of the resonances
 - addition or removal of marginal components
- The systematic variations producing the largest deviations on the $Z_c(4100)$ parameters (mass, width and fit fraction) are used to evaluate the systematic effects on the significances
- $\bullet~Z_c(4100)$ significance when including systematic uncertainties and correlations between them: 3.2σ

Source	$\Delta(-2\ln\mathcal{L})$	Significance
Nominal fit	41.4	4.8σ
Fixed yields	45.8	5.2σ
Phase-space border veto	44.6	5.1σ
η_c width	36.6	4.3σ
$K^+\pi^-$ S-wave	31.8	3.9σ
Background	27.4	3.4σ

Discrimination between $J^P = 0^+$ and $J^P = 1^-$

Source	$\Delta(-2\ln\mathcal{L})$	Significance
Default	18.6	4.3σ
Fixed yields	23.8	4.9σ
Phase-space border veto	24.4	4.9σ
η_c width	4.2	2.0σ
Background	3.4	1.8σ
$K^+\pi^-$ S-wave	1.4	1.2σ

SELEX Ξ_{ec}^+

Using collisions of a hyperon beam on fixed nuclear targets

Future prospect for Ξ_{cc}^{++}

Other states

Ξ_{cc}^{++} lifetime

Ξ_{cc}^{++} lifetime: systematic uncertainties

Source	Uncertainty (ps)
Signal and background mass models	0.005
Correlation of mass and decay-time	0.004
Binning	0.001
Data-simulation differences	0.004
Resonant structure of decays	0.011
Hardware trigger threshold	0.002
Simulated Ξ_{cc}^{++} lifetime	0.002
Λ_b^0 lifetime uncertainty	0.001
Sum in quadrature	0.014