

Nucleon Electromagnetic Form Factors on GPDs

Negin Sattary Nikkhoo

ì

Presented by

@ merlofotografia.com

ü **Most of what we know on the structure of the nucleon has come from the scattering of high energy leptons. This is due to their structureless nature, their well-known and quantified electromagnetic interaction with matter.**

1. Inclusive scattering was Only the scattered lepton is detected and the target nucleon is unobserved.

antiquark

valenc ouarks

2. Exclusive scattering The final hadronic state of the reaction is fully determined.

Deep-Inelastic scattering

In DIS, $f_1(x)$ is related to the unpolarized x momentum distributions of the partons $q(x)$.

$$
f_1(x) = \frac{1}{2} \sum_q e_q^2 q(x)
$$

The non-perturbative parton distribution functions (PDFs) is defined via matrix elements of parton operators between nucleon states with equal momenta:

$$
q(x) = \frac{p^+}{4\pi} \int dy^- e^{ixp^+y^-} \langle p|\bar{\psi}_q(0)\gamma^+ \psi_q(y)|p\rangle\Big|_{y^+=\vec{y}_\perp=0}
$$

Elastic scattering

The FFs are related to the following QCD matrix element in space– time coordinates

Sachs form factors

$$
G_E(t) = F_1(t) + \frac{-t}{4m^2} F_2(t)
$$

$$
G_M(t) = F_1(t) + F_2(t)
$$

Generalized Parton Distributions

Like usual PDFs, GPDs are non-perturbative functions defined via the matrix elements between nucleon states with different momenta [1-3]:

$$
\frac{P^+}{2\pi} \int dy^- e^{ixP^+y^-} \langle p' | \bar{\psi}_q(0) \gamma^+ \psi_q(y) | p \rangle \Big|_{y^+ = \vec{y}_\perp = 0}
$$
\n
$$
= H_q(x, \xi, t) \overline{N}(p') \gamma^+ N(p) + E_q(x, \xi, t) \overline{N}(p') i\sigma^{+v} \frac{\Delta_v}{2m_N} N(p) \Big|_{[2]X, D. J_i, Phys, Rev. Lett. 78, 610 (1997).}
$$
\n
$$
\frac{P^+}{2\pi} \int dy^- e^{ixP^+y^-} \langle p' | \bar{\psi}_q(0) \gamma^+ \gamma_5 \psi_q(y) | p \rangle \Big|_{y^+ = \vec{y}_\perp = 0}
$$
\n
$$
= \overline{H}_q(x, \xi, t) \overline{N}(p') \gamma^+ \gamma_5 N(p) + \overline{E}_q(x, \xi, t) \overline{N}(p') \gamma_5 \frac{\Delta_v}{2m_N} N(p)
$$
\nGPDs depend on the squared 4-momentum
transfer *t*, on the average momentum fraction
x of the active quark, and on the skewness
parameter ξ , which is the longitudinal
momentum transfer.
\n
$$
N(p)
$$
\n
$$
\chi + \xi
$$
\n
$$
\chi - \xi
$$

Relation between GPDs, PDFs, and FFs

- Traditionally, elastic form factors and parton distribution functions (PDFs) were considered totally unrelated;
- Elastic form factors give information on the charge and magnetization distributions in transverse plane.
- PDFs describe the distribution of partons in the longitudinal direction.

$$
\text{Forward limit } (p = \acute{p}, t = 0) \longrightarrow H_q(x, 0, 0) = \begin{cases} q(x) & x > 0 \\ -\bar{q}(-x) & x < 0 \end{cases}
$$

 \checkmark At finite momentum transfer, there are model independent sum rules which relate the first moments of the GPDs to the elastic form factors

$$
\int_{-1}^{+1} dx \, H^q(x,\xi,t) = F_1^q(t) \qquad \qquad \int_{-1}^{+1} dx \, E^q(x,\xi,t) = F_2^q(t)
$$

$$
F_1^u(0) = 2
$$
 $F_1^d(0) = 1$ $F_2^u(0) = \kappa_u$ $F_2^d(0) = \kappa_d$

$$
F_1(t) = \sum_q e_q F_1^q(t)
$$

\n
$$
F_2(t) = \sum_q e_q F_2^q(t)
$$

\n
$$
F_1^p(0) = 1 \t F_1^n(0) = 0
$$

\n
$$
F_2^p(0) = 1.79 F_2^n(0) = -1.91
$$

If the momentum transfer $t = \Delta_{\perp}^2$ is transverse, then ξ =0. The integration region can be reduced to the interval $0 < x < 1$. So, We can rewrite $F_1(t)$ and $F_2(t)$ as follow:

$$
F_1(t) = \sum_q e_q \int_0^1 dx \mathcal{H}^q(x, t) \qquad F_2(t) = \sum_q e_q \int_0^1 dx \mathcal{E}^q(x, t)
$$

In some studies [4-6], the dependence on t and x for $\mathcal{H}^q(x,t)$ has been considered separately

 $\mathcal{H}^q(x,t) = q_{\nu}(x) G(t)$

- [4] M. Guidal *et al.*, Phys. Rev. D **72**, 054013 (2005).
- [5] A. V. Radyushkin, Phys. Rev. D 58, 114008 (1998).
- [6] O. V. Selyugin, Phys. Rev. D 89, 093007 (2014).
- \checkmark Our goal is to calculate electromagnetic form factors in the region of high momentum transfers.
- \checkmark As yet, the most common ansatzes used in literature are Gaussian and Regge ansatzes for calculating the electromagnetic form factors.

$$
\mathcal{H}^q(x,t) = q_v(x)e^{\frac{(1-x)t}{4x\lambda^2}}
$$
 Gaussian ansatz

 $\mathcal{H}^q(x,t) = q_p(x)x^{-\alpha' t}$ **Regge ansatz**

 \checkmark These ansatzes can reproduce experimental electromagnetic form factors in the region of low and medium momentum transfers.

 \checkmark However, by considering Modified Gaussian and Extended Regge ansatzes we can reproduce experimental form factors also in the region of high momentum transfers.

$$
\mathcal{H}(x,t) = q(x) \exp\left(\alpha t \frac{(1-x)^2}{x^m}\right) \longrightarrow \text{Modified Gaussian ansatz}
$$

 $\mathcal{H}(x,t) = q(x)x^{-\alpha' t(1-x)}$ **Extended Regge ansatz**

 \square In the case of the Pauli form factor, F_2 (t), we take the same parameterization for $\mathcal{E}^q(x,t)$, which is given by:

 $\mathcal{E}^{q}(x, t) = \mathcal{E}^{q}(x)x^{-\alpha'(1-x)t}$ and $\mathcal{E}^{q}(x,t) = \mathcal{E}^{q}(x) \exp[\alpha \frac{(1-x)^{2}}{m}]$ $\frac{(-x)}{x^m}$ t]

for extended Regge and modified Gaussian ansatzes, respectively.

The experimental proton Pauli form factor at large t exhibits a faster reduction than Dirac form factor. In order to yield a faster reduction with t, one has to multiply an additional power of $(1 - x)$ to $\mathcal{E}(x)$. Thus, we have

$$
\mathcal{E}^{u}(x) = \frac{\kappa_{u}}{N_{u}} (1 - x)^{\eta_{u}} u_{v}(x)
$$
 and

$$
\mathcal{E}^{d}(x) = \frac{\kappa_{d}}{N_{d}} (1 - x)^{\eta_{d}} d_{v}(x)
$$

- \checkmark In some previous studies [4, 7], Dirac and Pauli form factors were extracted by choosing **MSRT 2002** PDFs.
- \checkmark In Ref. [8], we used \checkmark CJ15, JR09, and \checkmark GJR07 PDFs to extract the Dirac and Pauli form factors.

[7] O. V. Selyugin and O. V. Teryaev, Phys. Rev. D **79**, 033003 (2009). [8] Negin Sattary Nikkhoo and M. R. Shojaei, Phys. Rev. C 97, 055211 (2018).

 10

The proton Dirac form factor $F_{\frac{1}{2}}$ multiplied by t^2

F1 and F2 form factors of u and d quarks

 $-$ **t** $[GeV^2]$

The neutron electric form factor

14

Nucleon electric mean squared radius

The electric mean squared radius of proton and neutron are determined as

The Dirac mean radii squared is calculated both with the Extended Regge ansatz:

$$
r_{1,p}^{2} = -6\alpha^{'} \int_{0}^{1} dx [e_{u}u_{v}(x) + e_{d}d_{v}(x)](1-x) \ln(x),
$$

$$
r_{1,n}^{2} = -6\alpha^{'} \int_{0}^{1} dx [e_{u}d_{v}(x) + e_{d}u_{v}(x)](1-x) \ln(x),
$$

and with the Modified Gaussian ansatz:

$$
r_{1,p}^{2} = -6\alpha \int_{0}^{1} dx [e_{u}u_{v}(x) + e_{d}d_{v}(x)] \frac{(1-x)^{2}}{x^{m}},
$$

$$
r_{1,n}^{2} = -6\alpha \int_{0}^{1} dx [e_{u}d_{v}(x) + e_{d}u_{v}(x)] \frac{(1-x)^{2}}{x^{m}}.
$$

The proton and neutron electric radius

Thanks for your attention

R. A. OR