La fisica di LHC: la frontiera dell'energia

Fabio Cossutti – INFN Trieste

Masterclass 2018

La fisica di LHC: la frontiera dell'energia F. Cossutti - 20/2/2018

I

La fisica di LHC: la frontiera dell'energia

F. Cossutti - 20/2/2018

La fisica di LHC: la frontiera dell'energia

F. Cossutti - 20/2/2018

Fisica delle particelle elementari

Relatività ristretta

Meccanica quantistica

 $(mc)^2 = \left(\frac{E}{c}\right)^2 - p^2$

Ogni particella è descritta da una funzione d'onda. È possibile calcolare la probabilità che in una interazione, descritta da V, si passi dallo stato i allo stato f:

states of the system.

= **teoria quantistica dei campi**, la base per descrivere le interazioni tra particelle elementari

La fisica di LHC: la frontiera dell'energia F. Cossutti - 20/2/2018

Struttura della materia e forze fondamentali: cosa sappiamo?

- La materia conosciuta è fatta di leptoni e quark, organizzati entrambi in 3 famiglie
- Le interazioni elettrodeboli sono molto ben descritte dal modello di Glashow-Weinberg-Salam
 - come verificato in 40 anni di esperimenti
- Le interazioni forti sono ben descritte dalla cromodinamica quantistica
 - Anche se spesso non sappiamo bene come usarla per calcolare quantità osservabili
- Assieme queste teorie costituiscono il Modello Standard della fisica delle particelle

Dalla teoria...

$$\begin{split} \mathcal{L} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} Z_{\mu\nu} Z^{\mu\nu} - \frac{1}{2} (F_W^{\dagger})_{\mu\nu} (F_W)^{\mu\nu} \\ &+ \frac{1}{2} \partial_{\mu} H \partial^{\mu} H + \frac{1}{2} M_Z^2 Z_{\mu} Z^{\mu} + M_W^2 (W_-)_{\mu} (W_+)^{\mu} - \frac{1}{2} m_H^2 H^2 \\ &+ \bar{e}(i \partial - m_e) e + i \bar{\nu} \partial \nu \\ &+ i g (\partial_{\mu} W_{+\nu} - \partial_{\nu} W_{+\mu}) W_-^{\nu} (\cos \theta_W Z^{\mu} + \sin \theta_W A^{\mu}) \\ &+ i g (\partial_{\mu} W_{-\nu} - \partial_{\nu} W_{-\mu}) W_+^{\mu} (\cos \theta_W Z^{\nu} + \sin \theta_W A^{\nu}) \\ &+ i g (W_-^{\mu} W_+^{\nu} - W_+^{\mu} W_-^{\nu}) \partial_{\mu} (\cos \theta_W Z_{\nu} + \sin \theta_W A_{\nu}) \\ &- g^2 W_{+\mu} W_-^{\mu} (\cos \theta_W Z_{\nu} + \sin \theta_W A_{\nu}) (\cos \theta_W Z^{\nu} + \sin \theta_W A^{\nu}) \\ &+ g^2 W_+^{\nu} W_-^{\mu} (\cos \theta_W Z_{\mu} + \sin \theta_W A_{\mu}) (\cos \theta_W Z_{\nu} + \sin \theta_W A_{\nu}) \\ &+ \frac{g^2}{2} W_{-\nu} W_{+\mu} (W_-^{\nu} W_+^{\mu} - W_-^{\mu} W_+^{\nu}) + e \bar{e} \gamma_{\mu} e A^{\mu} \\ &- \frac{g}{2 \cos \theta_W} \left[\frac{1}{2} \bar{\nu} \gamma_{\mu} (1 - \gamma^5) \nu + \bar{e} \gamma_{\mu} (g_V - g_A \gamma^5) e \right] Z^{\mu} \\ &- \frac{g}{2 \sqrt{s}} \left[\bar{\nu} \gamma_{\mu} (1 - \gamma^5) e W_+^{\mu} + \bar{e} \gamma_{\mu} (1 - \gamma^5) \nu W_-^{\mu} \right] \\ &+ \frac{g^2}{4} \left(2vH + H^2 \right) W_{-\mu} W_+^{\mu} + \frac{(g^2 + gt^2)}{8} \left(2vH + H^2 \right) Z_{\mu} Z^{\mu} \\ &- \frac{\lambda}{4} \left(4vH^3 + H^4 \right) - \frac{m_e}{v} \bar{e} e H \end{split}$$

$$g_V = I_3 - 2Q\sin^2\theta_W; \quad g_A = I_3; \quad (F_W)^{\mu\nu} = \partial^{\mu}W^{\nu}_+ - \partial^{\nu}W^{\mu}_+$$

 $g\sin\theta_W = g'\cos\theta_W = e;$ $M_W = \frac{gv}{2};$ $M_Z = \sqrt{g^2 + g'^2}\frac{v}{2};$ $M_W = M_Z\cos\theta_W$

- Potete condensare il Modello Standard in una espressione matematica che spiega le interazioni tra particelle
 - Parametri liberi: masse e accoppiamenti
 - la "forza" con cui le particelle interagiscono tra loro

- Potete calcolare le caratteristiche di un urto tra particelle
 - diagrammi di Feynman: ad ogni linea e vertice corrisponde una espressione matematica

... alla misura sperimentale

Due tipi di analisi sperimentali:

- Misure di precisione delle caratteristiche predette dal modello (parametri fondamentali, grandezze misurabili in urti tra particelle ad esse collegate...)
 - deviazioni dalle predizioni possono indicare fisica oltre il Modello Standard
- Ricerca diretta di "nuova fisica"
 - evidenza diretta della produzione di particelle non osservate prima, non predette dal Modello Standard

Approcci complementari

- le misure di precisione possono evidenziare fenomeni ad energie non direttamente accessibili alla ricerca diretta
 - Produzione di "particelle virtuali" nelle "correzioni di ordine superiore"

Due facce della stessa medaglia

- Ricerca di nuova fisica: produzione di Z' ad alta massa che decade in due elettroni
- Misura di precisione: urto tra due bosoni W

8

I bosoni vettori W e Z: dalla scoperta di Rubbia a noi

I bosoni vettori W e Z: dalla scoperta di Rubbia a noi

Only Published Results

20 anni di quark top: trovato dove doveva essere

Forze e particelle: le (in)costanti di accoppiamento

|2

La fisica di LHC: la frontiera dell'energia

F. Cossutti - 20/2/2018

Perchè tutte queste particelle hanno massa? Il bosone di Higgs

| |3

La fisica di LHC: la frontiera dell'energia

Le domande per LHC

- Origine della massa: esiste il bosone di Higgs come previsto dallo Standard Model e dal suo meccanismo di rottura spontanea della simmetria elettrodebole?
- Esiste una simmetria ulteriore tra fermioni e bosoni? È la supersimmetria? Quale dei tanti possibili scenari?
- Ci sono segnature che indicano un legame tra la gravitazione e le altre tre forze fondamentali?
- Di cosa e' fatta la Materia Oscura che compone la maggior parte della massa dell'Universo?

Il Modello Standard non può essere la fine della storia...

Dopo pochi mesi di run nel 2010...

La fisica di LHC: la frontiera dell'energia F. Cossutti - 20/2/2018

Dopo pochi mesi di run nel 2010...

La fisica di LHC: la frontiera dell'energia F. Cossutti - 20/2/2018

Dopo 3 anni di run...

Dopo 3 anni di run...

Dopo 3 anni di run...

Massa ed energia

1 GeV (Giga ElectronVolt) = 10^9 eV m_{protone} = 0.938 GeV = $1.67262158(31) \times 10^{-27} \text{ Kg}$ m_{elettrone} = 0.0005 GeV = $9.109 \times 10^{-31} \text{ Kg}$

Per dare ad un elettrone l'energia di 1GeV, dovremmo mettere in serie 10⁹= 100000000 pile da 1 Volt !!

Perché vogliamo accelerare le particelle a così alte energie?

L'osservazione del microcosmo

I piu` piccoli dettagli "risolvibili" hanno dimensioni confrontabili $con \lambda$ della radiazione incidente. piccola lunghezza d'onda grande quantità di motoquantità di moto grande lunghezza d'onda piccola quantità di moto lunghezza d'onda — Particelle di alta energia sono gli "esploratori del microcosmo"

Perchè un collisionatore ?

E=mc² : la massa si può trasformare in energia e viceversa

Collider vs bersaglio fisso: più energia nel centro di massa a parità di energia del fascio

Large Hadron Collider

Large Hadron Collider

Large Hadron Collider

La fisica di LHC: la frontiera dell'energia F. Cossutti - 20/2/2018

Un po' di storia:

LEP

La macchina a fasci incrociati e+e- a piu' alta energia

- LEP, un anello di 27 Km
- Fasci di elettroni e positroni di oltre 100 GeV
- In funzione dal 1989 al 2000
- Smontato nel 2001 per far posto a LHC : fasci di protoni da 7 TeV

Macchine a fasci incrociati: *Collisori*

- Le macchine moderne per la fisica fondamentale sono Colliders (*Collisori*)
- Si producono collisioni frontali tra elettroni e positroni oppure tra protoni e (anti)protoni o anche elettroni e protoni.

I protoni sono particelle composite: si sfrutta solo parte dell'energia

Per protoni ad altissima energia la maggior parte di interazioni sono tra gluoni

Acceleratori Circolari e..... bolletta della luce

Una particella accelerata emette energia per radiazione L'energia persa deve essere compensata dall'acceleratore

Bolletta della luce $\propto \frac{\text{Energia}^4}{\text{massa}^4} \frac{1}{\text{raggio della macchina}}$

• Accelerare elettroni e' molto piu' costoso, hanno una massa 2000 volte inferiore ai protoni

• Raddoppiare l'energia significa aumentare di 16 volte il raggio

LEP : 27 Km di circonferenza !

Componenti principali di un acceleratore

La fisica di LHC: la frontiera dell'energia

F. Cossutti - 20/2/2018

Componenti principali di un acceleratore

La fisica di LHC: la frontiera dell'energia

F. Cossutti - 20/2/2018

Componenti principali di un acceleratore

La fisica di LHC: la frontiera dell'energia

LHC: la sfida tecnologica

- Filo singolo del cavo superconduttore:
 6 micron per 20 km
- Intensità di corrente del filo completo: I 2000 ampere
- Massa fredda: nuova tecnica di saldatura per acciaio inossidabile
- Magneti lunghi 15 metri consegnati nel 2006, sistema pronto nel 2008
- Refrigeratori a 4.5 kelvin (già usati da LEP2)
- Energia immagazzinata: 360 Mjoule per fascio (1 Jumbo lanciato a ~ 154 km/h)
- Dimensioni del fascio: la Spagna su una moneta da un Euro
- Fascio focalizzato nelle zone di interazione (esperimenti): 20 micron

Sezioni d'urto a LHC

La fisica di LHC: la frontiera dell'energia F. Cossutti - 20/2/2018

Decadimenti del bosone di Higgs a LHC

Rivelatori di particelle per un esperimento su collisore

- Parte piu` interna: misura non distruttiva delle tracce cariche
 - Particelle ionizzanti, tipicamente in campo magnetico per misurarne il momento, rivelate da camere a fili, dispositivi a semiconduttore, che raccolgono la carica di ionizzazione, precisione spaziale 10/100 micron
- Esternamente: calorimetri elettromagnetici (elettroni e fotoni) e adronici, misura distruttiva dell' energia
 - Particelle "sciamano" in un materiale denso, si raccoglie l'energia prodotta, si misurano anche particelle neutre (fotoni, neutroni)

Attorno a tutto: tracciare I muoni

• Le particelle cariche meno interagenti

Misura di impulso: i tracciatori

- Come si misura il momento di una particella carica?
 - Usando un campo magnetico e la forza di Lorentz
 - Maggiore il campo magnetico, migliore la misura
 - Ma la quantità di materiale conta: minimizzare il multiplo scattering nella materia

Misura di energia: i calorimetri

Come si misura l'energia di una particella ? Usiamo una grossa quantità di materiale in modo che le particelle vi rilascino tutta l'energia prima di fermarsi

Un esempio reale: Compact Muon Solenoid

Un esempio reale: Compact Muon Solenoid

Combinare più tecniche: la ricostruzione completa di un evento

La fisica di LHC: la frontiera dell'energia F. Cossutti - 20/2/2018

Due sono meglio di uno solo: ATLAS

Dalla simulazione al calcolatore alla realtà

Perchè avere un rivelatore sofisticato?

- Le potenzialità di misura e scoperta di un apparato dipendono dalla qualità degli oggetti ricostruiti (e,μ,γ,adroni carichi e neutri)
 - Risoluzione: con quale precisione misuro una grandezza?
 - Efficienza: quale frazione delle particelle "vere" che attraversano il mio rivelatore riesco a ricostruire?
 - Purezza: quante volte l'oggetto ricostruito e/o identificato corrisponde ad un oggetto reale?
 - Prontezza: qual'è il tempo necessario a raccogliere un segnale ed essere pronti a raccoglierne il sucessivo?
 - Ogni 25 ns si potrebbe avere una collisione...
- Tutto ciò dipende dalle caratteristiche dell'apparato
 - Numero di canali e loro granularità, ermeticità, quantità di materiale, velocità di risposta al segnale degli elementi sensibili e
 - 43 dell'elettronica di letturaisi rumore instrinspegogia ... F. Cossutti 20/2/2018

I rivelatori: dal principio fisico all'oggetto reale: tracciatori

Ad es. CMS tracker...

L'energia depositata dalle particelle incidenti mediante ionizzazione nel silicio Viéne letta dall'elettronica entrasformatariman segnate digitate - 20/2/2018

I rivelatori: dal principio fisico all'oggetto reale: tracciatori

Ad es. CMS tracker...

L'energia depositata dalle particelle incidenti mediante ionizzazione nel silicio Viene letta dall'elettronica entrasformatariman segnate digitate - 20/2/2018

I rivelatori: dal principio fisico all'oggetto reale: calorimetri

Ad es. CMS ECAL...

Calorimetro omogeneo: I cristalli in cui le particelle interagiscono e sciamano producono luce (scintillazione) al passaggio delle particelle cariche. La luce viene misurata da fotorivelatori e trasformata in segnale digitale Nei caforimetri a campionamento^{fisi}parte^{Fi}mteragiente^{II}erparte^{Fi}sensibile/sono separate

I rivelatori: dal principio fisico all'oggetto reale: calorimetri

Ad es. CMS ECAL... Calorimetro omogeneo: I cristalli in cui le particelle interagiscono e sciamano producono luce (scintillazione) al passaggio delle particelle cariche. La luce viene misurata da fotorivelatori e trasformata in segnale digitale Nei calorimetri a campionamento^{fis}parte^Fmteragiente^Rensibile^Nson8 separate

I rivelatori: dal principio fisico all'oggetto reale: calorimetri

Calorimetro omogeneo: I cristalli in cui le particelle interagiscono e sciamano producono luce (scintillazione) al passaggio delle particelle cariche. La luce viene misurata da fotorivelatori e trasformata in segnale digitale Nei calorimetri a campionamento^{fisi}parte^{Fi}mteragiente^{II}erparte^{Fi}sensibile/sono separate

I rivelatori: dal principio fisico all'oggetto reale: camere per i muoni

raccolta dopo il moto in un campo elettrico eitrasformata dell'elettronica in segnale digitale

I rivelatori: dal principio fisico all'oggetto reale: camere per i muoni

Monitored drift tubes (MDT)

Rivelatori a gas: le particelle cariche incidenti ionizzano il gas, la carica viene raccolta dopo il moto in un campa elettrico el trasformata dall'elettronica in segnale digitale

Ad es. ATLAS MDT e CSC...

Dall'oggetto reale all'oggetto di fisica

- Ricostruzione: i segnali dei vari canali di lettura vengono combinati prima a livello di sotto-rivelatore, poi tra rivelatori diversi per ricostruire le particelle che hanno attraversato il rivelatore
 - ► Tracciatore: singolo canale (hit) → cluster di hit → segmento di traccia (con procedure di fit che combinano vari cluster suscettibili di provenire dalla stessa particella)
 - ► Calorimetro: singolo canale (hit)→cluster di hit
 - Combinando un segmento di traccia ed un cluster calorimetrico si può ad esempio ricostruire un elettrone o un pione e distinguerli tra loro dalle caratteristiche misurate
 - Con algoritmi opportuni si possono raggruppare le particelle in getti che sono il prodotto della trasformazione di quark e gluoni prodotti nell'interazione in adroni

Dalla ricostruzione all'analisi

Analisi: studio statistico delle proprietà di un campione di eventi ricostruiti Definizione dei criteri di selezione per gli eventi di interesse (es. $H \rightarrow ZZ \rightarrow \mu \mu \mu \mu$) Calcolo delle grandezze osservabili di interesse (es. massa invariante dei 4 μ)

Dal rivelatore al calcolatore: selezionare e acquisire i dati

40 milioni di volte al secondo si incontrano i pacchetti dei protoni dai 2 fasci, producendo 20 interazioni sovrapposte.

Flusso di dati "vergini": 80 TeraBytes al secondo

- 100.000 CD al secondo!
- Una torre di 100 metri di CD al secondo!

Con algoritmi di preselezione riusciamo a scrivere su disco molto meno, 200 Mbytes/s

Per trovare il bosone di Higgs necessari ~ 3 anni di dati raccolti, a 100 eventi al secondo

= 6 PetaBytes = 6 milioni di GigaBytes

Per il processamento dei dati sono necessari ~ 10 minuti a evento

- 10 min $100^{(60*60*24*365*3)/3} = 3153600000 min = 8760000 ore$

= 365000 giorni = 1000 anni

Dal principio alla pratica, la costruzione di un evento

La fisica di LHC: la frontiera dell'energia F. Cossutti - 20/2/2018

Non basta avere un buon rivelatore...

- Simulazione, acquisizione e selezione, ricostruzione, analisi: tutto richiede calcolatori e software
- Alla fine degli anni 70 il CERN possedeva un Cray XMP, la macchina più potente d'Europa
- Oggi la vostra PlayStation o questo notebook sono 2/3 volte più potenti
 - E stanno in uno zaino

La fisica di LHC: la frontiera dell'energia F. Cossutti - 20/2/2018

... ma bisogna essere alla frontiera del calcolo: la Grid e il modello a Tier

... ma bisogna essere alla frontiera del calcolo: la Grid e il modello a Tier

Il segreto del successo è nell'eccellente funzionamento del trasferimento dei dati.

La vostra analisi può essere eseguita ovunque nel mondo, e ricevete I risultati sul vostro computer

Data SIO, NOAA, U.S. Navy, NGA, GEBCO

La fisica di LHC: la frontiera dell'energia F. Cossutti - 20/2/2018

Running jobs: 236092

Transfer rate: 11.41 GiB/sec

Google

LHC@CERN: Collaborazioni internazionali

Presente e futuro: High Luminosity LHC

CMS Integrated Luminosity, pp

La fisica di LHC: la frontiera dell'energia F. Cossutti - 20/2/2018

Per concludere

Con ~ 40 pb⁻¹ tra 2009 e 2010 si sono capiti i rivelatori, aggiustate le simulazioni, studiati i processi standard noti, prodotte decine di articoli...

►Tra il 2011 ed il 2012 LHC ha accumulato una statistica senza precedenti per questo tipo di collider 5 fb⁻¹ (7 TeV) + 20 fb⁻¹ (8 TeV), ha permesso oltre 600 pubblicazioni tra ATLAS e CMS, ed ha scoperto quello che sembra essere il bosone di Higgs

- Si tratta dell'Higgs del Modello Standard? È il primo di una famiglia?
- La supersimmetria c'è ma è meno "semplice" di quel che pensavamo? O non l'abbiamo cercata nel posto giusto?
- Ci aspettano sorprese? Qualcosa che non ci attendevamo? Vedremo segnali di materia oscura?

Dal 2015 l'energia nel centro di massa è quasi doppia, e la quantità di dati raccolta pure

Attivita` destinata a durare per i prossimi 15 anni almeno

▶Ci sono molte persone che hanno lavorato per anni, anche 20, per poter arrivare a questo momento, una nuova fase sta per partire...

Voi siete dei privilegiati: l'avete a portata di mano

Domande?

Cosa ti può combinare una saldatura fatta male...

Bad surprise after gamma-ray imaging of the joints: Void is present in most of bus extremities because SnAg flows out during soldering of the joint

Cos' è accaduto a settembre 2009

La fisica di LHC: la frontiera dell'energia

F. Cossutti - 20/2/2018

I bosoni vettori W e Z: dalla scoperta di Rubbia a noi

ATLAS: tecniche differenti, struttura analoga

Un "microscopio" a strati specializzati

67

La fisica di LHC: la frontiera dell'energia F. Cossutti - 20/2/2018

La differenza chiave: il campo magnetico

CMS: solenoide con giogo di ritorno instrumentato (camere a muoni)
B = 4T, L ~ 3m, compatto (basso costo), ottima risoluzione al centro ma povera in avanti, muoni a basso angolo attraversano molto materiale
ATLAS: piccolo solenoide per il tracciatore + toroide in aria: ottimo L²B anche in avanti, ma dimensioni giganti ~ 44 m, campo magnetico molto complesso,
Beneficio limitato per il tracciatore^{di LHC: la frontiera dell'energia} F. Cossutti - 20/2/2018

Dalla simulazione al calcolatore alla realtà

Varie strategie possibili per l'acquisizione dei dati

La fisica di LHC: la frontiera dell'energia F. Cossutti - 20/2/2018