Materia Oscura:
alla Ricerca di una Tenue Luce

Capitolo 1

Misurare la Massa dell'Universo o almeno di una galassia

NIST's Eddie Mulhern holding K92, one of the agency's kilogram samples.

Cosa Possiamo Misurare Direttamente?

- Fino a poco tempo fa non molto oltre:
- la distanza angolare apparente fra due galassie
- l'intensità luminosa apparente di ciascuna galassia
- il colore apparente di ciascuna galassia

Distanza angolare apparente

- Misure angolari per astrofili dilettanti

Tenete il braccio completamente teso e guardate il cielo attraverso le mire

Campioni angolari a portata di mano (letteralmente)

Il Cluster di Galassie nella Chioma di Berenice

Il Cluster di Galassie nella Chioma di Berenice

Il Colore di Una Galassia

Frequenza (Hz)

- Lo spettro delle onde elettromagnetiche su 20 ordini di grandezza

Radiazione di Corpo Nero

Spettri di emissione degli elementi

Lua	Ce	Pr	Nd	Pm	Sm	130	Gd	Tb	Dy	Ho	Er	7 m	Yb	Hu
Ac	Th	$\mathbf{P a}$	U	Np	Pu	Am	Cm	Bk	¢f	Es	Fm	Md	No	Lr

Hubble

FOR EXTRA-GALACTIC NEBULAE

Effetto Doppler: misure di velocità $\&$ distanza

Spettro dell'Elio (sorgente in lab)

DISTANCE

7.000 .000 light years

Distanza valutata dal red shift
Velocità lungo la linea di vista valutata dall'effetto Dopplè Dimensione valutata dall'estensione angolare dell'ammasso *

L’Interpretazione di Zwicky

THE ASTROPHYSICAL JOUURNAL
AN INTERNATIONAL REVIEW OF SPECTROSCOPY AND ASTRONOMICAL PHYSICS

$$
\overline{\sum_{i} \frac{1}{2} m_{i} v_{i}^{2}}=\overline{\sum_{i} \sum_{j<i} \frac{G m_{i} m_{j}}{r_{i j}}}
$$

$$
M v^{2} \simeq \frac{G M^{2}}{R}
$$

$$
M \simeq \frac{v^{2} R}{G}
$$

Combining (33) and (34), we find

$$
\begin{equation*}
\mathscr{M}>9 \times{ }^{\mathrm{I}^{46} \mathrm{gr}} . \tag{35}
\end{equation*}
$$

The Coma cluster contains about one thousand nebulae. The average mass of one of these nebulae is therefore

$$
\begin{equation*}
\bar{M}>9 \times \mathrm{IO}^{43} \mathrm{gr}=4.5 \times \mathrm{IO}^{\mathrm{I0}} M_{\odot} . \tag{36}
\end{equation*}
$$

[...]

This result is somewhat unexpected, in view of the fact that the luminosity of an average nebula is equal to that of about 8.5×10^{7} suns. According

Curve di Rotazione

- Ciò che tiene assieme le galassie in un ammasso è ciò che tiene assieme le stelle in una galassia

DISTRIBUTION OF DARK MATTER IN THE SPIRAL GALAXY NGC 3198

T. S. van Albada, ${ }^{1}$ J. N. Bahcall, ${ }^{2}$ K. Begeman, ${ }^{1}$ and R. Sanscisi ${ }^{1}$

Received 1984 August 13; accepted 1985 February 26

ABSTRACT

Two-component mass models, consisting of an exponential disk and a spherical halo, are constructed to fit a newly determined rotation curve of NGC 3198 that extends to 11 disk scale lengths. The amount of dark matter inside the last point of the rotation curve, at 30 kpc , is at least 4 times larger than the amount of visible matter, with $\left(M / L_{B}\right)_{\mathrm{tot}}=18 M_{\odot} / L_{B \odot}$. The maximum mass-to-light ratio for the disk is $M / L_{B}=3.6$. The available data cannot discriminate between disk models with low M / L and high M / L, but we present arguments which suggest that the true mass-to-light ratio of the disk is close to the maximum computed value The core radius of the distribution of dark matter is found to satisfy $1.7<R_{\text {core }}<12.5 \mathrm{kpc}$.
Subject headings: galaxies: individual - galaxies: internal motions - interstellar: matter

Lensing Gravitazionale

- La luce (per definizione) segue nel vuoto una traiettoria rettilinea
- Non sempre la geometria descritta da queste rette è euclidea

WEAK-LENSING MASS RECONSTRUCTION OF THE INTERACTING CLUSTER 1E 0657-558: DIRECT EVIDENCE FOR THE EXISTENCE OF DARK MATTER ${ }^{1}$

La combinazione delle due foto

Radiazione

Cosmic Microwave Background Spectrum from COBE

Radiazione di corpo nero temperatura $\sim 2.72 \mathrm{~K}$

inflazione

fluttuazioni
quantiche

Table 17. Cosmological Parameter Summary

Parameter Symbol $\quad W M A P^{\mathrm{a}} \quad W M A P+\mathrm{eCMB}+\mathrm{BAO}+H_{0}^{\mathrm{a}} \mathrm{b}$

6-parameter Λ CDM fit parameters ${ }^{c}$

Physical baryon density	$\Omega_{b} h^{2}$	0.02264 ± 0.00050	0.02223 ± 0.00033
Physical cold dark matter density	$\Omega_{c} h^{2}$	$\bigcirc .1138 \pm 0.0045$	0.1153 ± 0.0019
Dark energy density ($w=-1$)	Ω_{Λ}	0.721 ± 0.025	$0.7135{ }_{-0.0096}^{+0.0095}$
Curvature perturbations $\left(k_{0}=0.002 \mathrm{Mpc}^{-1}\right)^{\mathrm{d}}$	$10^{9} \Delta_{\mathcal{R}}^{2}$	2.41 ± 0.10	2.464 ± 0.072
Scalar spectral index	n_{s}	0.972 ± 0.013	0.9608 ± 0.0080
Reionization optical depth	τ	0.089 ± 0.014	0.081 ± 0.012
Amplitude of SZ power spectrum template	$A_{\text {SZ }}$	<2.0 (95\% CL)	<1.0 (95\% CL)
6-parameter Λ CDM fit: derived parameters ${ }^{\text {e }}$			
Age of the universe (Gyr)	t_{0}	13.74 ± 0.11	13.772 ± 0.059
Hubble parameter, $H_{0}=100 \mathrm{~h} \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$	H_{0}	70.0 ± 2.2	69.32 ± 0.80
Density fluctuations @ $8 h^{-1} \mathrm{Mpc}$	σ_{8}	0.821 ± 0.023	$0.820_{-0.014}^{+0.013}$
Velocity fluctuations @ $8 h^{-1} \mathrm{Mpc}$	$\sigma_{8} \Omega_{m}^{0.5}$	0.434 ± 0.029	0.439 ± 0.012
Velocity fluctuations @ $8 h^{-1} \mathrm{Mpc}$	$\sigma_{8} \Omega_{m}^{0.6}$	0.382 ± 0.029	0.387 ± 0.012
Baryon density/critical density	Ω_{b}	0.0463 ± 0.0024	0.04628 ± 0.00093
Cold dark matter density/critical density	Ω_{c}	0.233 ± 0.023	$0.2402_{-0.0087}^{+0.0088}$
Matter density/critical density $\left(\Omega_{c}+\Omega_{b}\right)$	Ω_{m}	0.279 ± 0.025	$0.2865_{-0.0095}^{+0.0096}$
Physical matter density	$\Omega_{m} h^{2}$	0.1364 ± 0.0044	0.1376 ± 0.0020
Current baryon density $\left(\mathrm{cm}^{-3}\right)^{\mathrm{f}}$	n_{b}	$(2.542 \pm 0.056) \times 10^{-7}$	$(2.497 \pm 0.037) \times 10^{-7}$
Current photon density $\left(\mathrm{cm}^{-3}\right)^{\mathrm{g}}$	n_{γ}	410.72 ± 0.26	410.72 ± 0.26
Baryon/photon ratio	η	$(6.19 \pm 0.14) \times 10^{-10}$	$(6.079 \pm 0.090) \times 10^{-10}$
Redshift of matter-radiation equality	$z_{\text {eq }}$	$3265{ }_{-105}^{+106}$	3293 ± 47
Angular diameter distance to $z_{\text {eq }}$ (Mpc)	$d_{A}\left(z_{\mathrm{eq}}\right)$	14194 ± 117	14173_{-65}^{+66}
Horizon scale at $z_{\mathrm{eq}}(h / \mathrm{Mpc})$	$k_{\text {eq }}$	0.00996 ± 0.00032	0.01004 ± 0.00014
Angular horizon scale at $z_{\text {eq }}$	$l_{\text {eq }}$	139.7 ± 3.5	140.7 ± 1.4

Capitolo 2

Cosa sappiamo della Dark

 Matter (capitolo molto breve)
After 80 years, what we know about DM:

- Attractive gravitational interactions and stable (or lifetime $\gg t_{U}$)
- DM and not MOND + only visible matter ("Bullet Cluster")
- $10^{-31} \mathrm{GeV} \leq$ mass $\leq 10^{-7} \mathrm{M}_{\odot}=10^{50} \mathrm{GeV}$ (limits on MACHOS astro-ph/0607207) ("Fuzzy DM", boson de Broglie wavelength $=1 \mathrm{kpc}$ Hu, Barkana, Gruzinov, astro-ph/0003365) or $0.2-0.7 \times 10^{-6} \mathrm{GeV} \leq$ mass (for particles which reached equilibrium - depending on boson-fermion and d.o.f. Tremaine-Gunn 1979; Madsen, astro-ph/0006074)

DM particle mass: 80 orders of magnitude!

Capitolo 3

Ricercare sotto ogni pietra

Darkside

Stabe

Obiettivo:

- Ricerca Diretta di materia oscura (WIMP)

Detector:

- TPC Argon bifase (liquido + gas) di 20 tonnellate con rivelazione del segnale di scintillazione e ionizzazione

Strategia per Darkside 20k:

- Osservazione di un segnale su fondo "nullo"

Darrkside: il Segnale

Urto elastico di WIMP su nucleo di ${ }^{40} \mathrm{Ar}$:
$\left\langle\beta_{\mathrm{WIMP}}\right\rangle \sim \frac{220 \pm 30 \mathrm{~km} / \mathrm{s}}{c} \sim(7.3 \pm 1.0) \cdot 10^{-4}$
Massima energia trasferita :

$$
\frac{1}{2} M_{\mathrm{W}} c^{2} \beta_{\mathrm{W}}^{2} \frac{4 M_{\mathrm{W}} M_{\mathrm{Ar}}}{\left(M_{\mathrm{W}}+M_{\mathrm{Ar}}\right)^{2}}+\mathcal{O}\left(\beta^{4}\right)
$$

Darkside: Metodo Misura

 Two-Phase Argon TPC

Scintillazione (lmmediata)

The primary ionizing particle (nuclear recoil or electron recoil) produces ionization and excitation along its track. Excited argon dimers are formed and their de-excitation leads to the emission of scintillation light presenting a fast and
slow component (associated $\mathrm{Ar}_{2}{ }^{*}$ singlet and triplet state) whose average ratio depends on the nature and energy of the ionizing particle.

Fast component

$$
(6 n s)
$$

Scintillazione (lmmediata)

Circa 40 fotoni UV (128nm) / keV
TMP per shift da 128 nm a $\sim 400 \mathrm{~nm}$
Segnale S 1 con componenti fast e slow. Fotoni visibili nei SiPM: 4.7/KeV

Rapporto FAST/SLOW dipende dalla particella ionizzante (nucleo/elettrone) \Rightarrow potente mezzo per discriminare recoil su elettrone (i.e. fondo da neutrini)

Fast component

$$
(6 n s)
$$

Tomizzazione (Tpc) Ritardata

Once in the multiplication region the applied field provides enough kinetic energy to the drifted electrons so that, while traveling in gas phase, they induce ELECTROLUMINESCENCE in a proportional regime (and not charge multiplication). This light is produced all along the multiplication region.

S2 signal

The amount of 52 depends on the nature and energy of the ionizing particle

Tonizzazione (Tpc) Ritardata

Fondi Da Neutrini Solari

Darkside 50 results

Darkside 20K - Altri Fondi

Decadimento $\beta^{39} \mathrm{Ar}$
($T_{1 / 2} \sim 269$ anni, $Q=565 \mathrm{keV}$)

- Darkside 50 usa Argon da miniere sotterranee impoverito UAr
- Per Darkside 20k impianto distillazione per rimuovere la componente radioattiva
Fondi da contaminazioni
(U, Th, Rn, ...beta),

Conclusioni

- La natura della Dark Matter rimane a tutt'oggi quasi completamente ignota e rappresenta uno dei più affascinanti temi di ricerca attuali.

