The Type III See-Saw:

the model and updated constraints

$$\downarrow \downarrow \\ \Delta m_{\alpha\beta}^2 \neq 0$$

$$\downarrow \downarrow \\
\Delta m_{\alpha\beta}^2 \neq 0$$

BUT: ν mass term not allowed in SM

$$\downarrow \downarrow \\ \Delta m_{\alpha\beta}^2 \neq 0$$

BUT: ν mass term not allowed in SM

 \Rightarrow we need more particles

If we had ν_R ...

2 possible mass terms:

If we had ν_R ...

2 possible mass terms:

Dirac mass: $-\overline{\nu_L}m_D\nu_R + \text{h.c.}$

If we had ν_R ...

2 possible mass terms:

Dirac mass:
$$-\overline{\nu_L}m_D\nu_R + \text{h.c.}$$

Majorana mass:
$$-\frac{1}{2}\overline{\nu_R}M\nu_R^c + \text{h.c.}$$

$$\mathcal{L}_{M} = -\frac{1}{2} \begin{pmatrix} \overline{\nu_{L}^{c}} & \overline{\nu_{R}} \end{pmatrix} \begin{pmatrix} 0 & m_{D} \\ m_{D} & M \end{pmatrix} \begin{pmatrix} \nu_{L} \\ \nu_{R}^{c} \end{pmatrix} + \text{h.c.}$$

$$\overline{\nu_L^c} \nu_R^c = \overline{\nu_R} \nu_L$$

$$\mathcal{L}_M \stackrel{\downarrow}{=} -\frac{1}{2} \begin{pmatrix} \overline{\nu_L^c} & \overline{\nu_R} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} + \text{h.c.}$$

$$\overline{\nu_L^c} \nu_R^c = \overline{\nu_R} \nu_L$$

$$\mathcal{L}_M \stackrel{\downarrow}{=} -\frac{1}{2} \begin{pmatrix} \overline{\nu_L^c} & \overline{\nu_R} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} + \text{h.c.}$$

eigenvalues:
$$m_{\pm}^2 - M m_{\pm} - m_D^2 = 0$$

$$\overline{\nu_L^c} \nu_R^c = \overline{\nu_R} \nu_L$$

$$\mathcal{L}_M \stackrel{\downarrow}{=} -\frac{1}{2} \begin{pmatrix} \overline{\nu_L^c} & \overline{\nu_R} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} + \text{h.c.}$$

$$m_{\pm}^2 - M m_{\pm} - m_D^2 = 0$$

$$\implies m_{\pm} = \frac{1}{2} \left(M \pm \sqrt{M^2 + 4m_D^2} \right)$$

$$\overline{\nu_L^c} \nu_R^c = \overline{\nu_R} \nu_L$$

$$\mathcal{L}_M \stackrel{\downarrow}{=} -\frac{1}{2} \begin{pmatrix} \overline{\nu_L^c} & \overline{\nu_R} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} + \text{h.c.}$$

$$m_+^2 - M m_\pm - m_D^2 = 0$$

$$\implies m_{\pm} = \frac{1}{2} \left(M \pm \sqrt{M^2 + 4m_D^2} \right)$$

$$M \gg m_D$$
see-saw limit

$$\overline{\nu_L^c} \nu_R^c = \overline{\nu_R} \nu_L$$

$$\mathcal{L}_M \stackrel{\longleftarrow}{=} -\frac{1}{2} \begin{pmatrix} \overline{\nu_L^c} & \overline{\nu_R} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} + \text{h.c.}$$

$$m_+^2 - M m_\pm - m_D^2 = 0$$

$$\implies m_{\pm} = \frac{1}{2} \left(M \pm \sqrt{M^2 + 4m_D^2} \right)$$

$$m_{-} = -m_D \frac{1}{M} m_D$$

$$m_{-} = -m_D \frac{1}{M} m_D$$

$$m_{-} = -m_D \frac{1}{M} m_D$$

$$\overline{\nu_L^c} \nu_R^c = \overline{\nu_R} \nu_L$$

$$\mathcal{L}_M \stackrel{\longleftarrow}{=} -\frac{1}{2} \begin{pmatrix} \overline{\nu_L^c} & \overline{\nu_R} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} + \text{h.c.}$$

$$m_{\pm}^2 - M m_{\pm} - m_D^2 = 0$$

$$\implies m_{\pm} = \frac{1}{2} \left(M \pm \sqrt{M^2 + 4m_D^2} \right)$$

$$m_{-} = -m_D^T \frac{1}{M} m_D$$

$$m_{D}$$

We need more particles

which ones?

 \Rightarrow we look at effective operators

$$\mathcal{L}_W = \frac{1}{2} c_{\alpha\beta}^{d=5} \left(\overline{\ell_{L\alpha}^c} \widetilde{\phi}^* \right) \left(\widetilde{\phi}^{\dagger} \ell_{L\beta} \right) + \text{h.c.}$$

$$\mathcal{L}_{W} = \frac{1}{2} c_{\alpha\beta}^{d=5} \left(\overline{\ell_{L\alpha}^{c}} \widetilde{\phi}^{*} \right) \left(\widetilde{\phi}^{\dagger} \ell_{L\beta} \right) + \text{h.c.}$$

$$\mathcal{L}_{W} = \frac{1}{2} c_{\alpha\beta}^{d=5} \left(\overline{\ell_{L\alpha}^{c}} \widetilde{\phi}^{*} \right) \left(\widetilde{\phi}^{\dagger} \ell_{L\beta} \right) + \text{h.c.} \quad \xrightarrow{\text{Sym. Break.}} \left(\frac{v^{2} c_{\alpha\beta}^{d=5}}{2} \right) \overline{\nu_{L\alpha}^{c}} \nu_{L\beta} + \dots$$

$$\mathcal{L}_{W} = \frac{1}{2} c_{\alpha\beta}^{d=5} \left(\overline{\ell_{L\alpha}^{c}} \widetilde{\phi}^{*} \right) \left(\widetilde{\phi}^{\dagger} \ell_{L\beta} \right) + \text{h.c.} \quad \xrightarrow{\text{Sym. Break.}} \left(\frac{v^{2} c_{\alpha\beta}^{d=5}}{2} \right) \overline{\nu_{L\alpha}^{c}} \nu_{L\beta} + \dots$$
Majorana mass!

fermion triplets: $\vec{\Sigma} = (\Sigma_1, \Sigma_2, \Sigma_3)$

fermion triplets:
$$\vec{\Sigma} = (\Sigma_1, \Sigma_2, \Sigma_3) \longrightarrow \Sigma^{\pm} = \frac{\Sigma_1 \mp i \Sigma_2}{\sqrt{2}}, \qquad \Sigma^0 = \Sigma_3$$

fermion triplets:
$$\vec{\Sigma} = (\Sigma_1, \Sigma_2, \Sigma_3) \longrightarrow \Sigma^{\pm} = \frac{\Sigma_1 \mp i \Sigma_2}{\sqrt{2}}, \qquad \Sigma^0 = \Sigma_3$$

$$\mathcal{L}_{\Sigma} = i\overline{\overline{\Sigma}_{R}} D \overline{\Sigma}_{R} - \left[\frac{1}{2} \overline{\overline{\Sigma}_{R}} M \overline{\Sigma}_{R}^{c} + \overline{\overline{\Sigma}_{R}} Y_{\Sigma} \left(\widetilde{\phi}^{\dagger} \vec{\tau} \ell_{L} \right) + \text{h.c.} \right]$$

fermion triplets:
$$\vec{\Sigma} = (\Sigma_1, \Sigma_2, \Sigma_3) \longrightarrow \Sigma^{\pm} = \frac{\Sigma_1 \mp i \Sigma_2}{\sqrt{2}}, \qquad \Sigma^0 = \Sigma_3$$

$$\mathcal{L}_{\Sigma} = i\overline{\overline{\Sigma}_{R}} \not\!\!\!D \overline{\Sigma}_{R} - \left[\frac{1}{2} \overline{\overline{\Sigma}_{R}} M \overline{\Sigma}_{R}^{c} + \overline{\overline{\Sigma}_{R}} Y_{\Sigma} \left(\widetilde{\phi}^{\dagger} \vec{\tau} \ell_{L} \right) + \text{h.c.} \right]$$

$$c^{d=5} = Y_{\Sigma}^T \frac{1}{M} Y_{\Sigma}$$

fermion triplets:
$$\vec{\Sigma} = (\Sigma_1, \Sigma_2, \Sigma_3) \longrightarrow \Sigma^{\pm} = \frac{\Sigma_1 \mp i \Sigma_2}{\sqrt{2}}, \qquad \Sigma^0 = \Sigma_3$$

$$\mathcal{L}_{\Sigma} = i \overline{\Sigma_R} \not \!\!\!\!D \vec{\Sigma}_R - \left[\frac{1}{2} \overline{\Sigma_R} M \vec{\Sigma}_R^c + \overline{\Sigma_R} Y_{\Sigma} \left(\widetilde{\phi}^{\dagger} \vec{\tau} \ell_L \right) + \text{h.c.} \right]$$

$$c^{d=5} = Y_{\Sigma}^T \frac{1}{M} Y_{\Sigma} \qquad \Longrightarrow \qquad m_{\nu} = -\frac{v^2}{2} c^{d=5} \equiv m_D^T \frac{1}{M} m_D$$

fermion triplets:
$$\vec{\Sigma} = (\Sigma_1, \Sigma_2, \Sigma_3) \longrightarrow \Sigma^{\pm} = \frac{\Sigma_1 \mp i \Sigma_2}{\sqrt{2}}, \qquad \Sigma^0 = \Sigma_3$$

$$\mathcal{L}_{\Sigma} = i\overline{\Sigma}_{R} \not\!\!\!D \vec{\Sigma}_{R} - \left[\frac{1}{2} \overline{\Sigma}_{R} M \vec{\Sigma}_{R}^{c} + \overline{\Sigma}_{R} Y_{\Sigma} \left(\widetilde{\phi}^{\dagger} \vec{\tau} \ell_{L} \right) + \text{h.c.} \right]$$

$$c^{d=5} = Y_{\Sigma}^{T} \frac{1}{M} Y_{\Sigma} \qquad \Longrightarrow \qquad m_{\nu} = -\frac{v^{2}}{2} c^{d=5} \equiv m_{D}^{T} \frac{1}{M} m_{D}$$

$$\delta \mathcal{L}^{d=6} = c_{\alpha\beta}^{d=6} \left(\overline{\ell_L}_{\alpha} \vec{\tau} \widetilde{\phi} \right) i \not D \left(\widetilde{\phi}^{\dagger} \vec{\tau} \ell_{L\beta} \right)$$

fermion triplets:
$$\vec{\Sigma} = (\Sigma_1, \Sigma_2, \Sigma_3) \longrightarrow \Sigma^{\pm} = \frac{\Sigma_1 \mp i \Sigma_2}{\sqrt{2}}, \qquad \Sigma^0 = \Sigma_3$$

$$\mathcal{L}_{\Sigma} = i \overline{\vec{\Sigma}_R} \not \!\!\!\!D \vec{\Sigma}_R - \left[\frac{1}{2} \overline{\vec{\Sigma}_R} M \vec{\Sigma}_R^c + \overline{\vec{\Sigma}_R} Y_{\Sigma} \left(\widetilde{\phi}^{\dagger} \vec{\tau} \ell_L \right) + \text{h.c.} \right]$$

$$c^{d=5} = Y_{\Sigma}^T \frac{1}{M} Y_{\Sigma} \qquad \Longrightarrow \qquad m_{\nu} = -\frac{v^2}{2} c^{d=5} \equiv m_D^T \frac{1}{M} m_D$$

$$\delta \mathcal{L}^{d=6} = c_{\alpha\beta}^{d=6} \left(\overline{\ell_L}_{\alpha} \vec{\tau} \widetilde{\phi} \right) i \not \!\!\!\!D \left(\widetilde{\phi}^{\dagger} \vec{\tau} \ell_{L\beta} \right) \qquad c^{d=6} = Y_{\Sigma}^{\dagger} \frac{1}{M^{\dagger}} \frac{1}{M} Y_{\Sigma}$$

$$\delta \mathcal{L}^{d=6} \implies \mathcal{L}_{lept.} = i\overline{\nu_L} \partial \!\!\!/ (1 + 2\eta) \nu_L + i\overline{l_L} \partial \!\!\!/ (1 + 4\eta) l_L + \frac{g}{\sqrt{2}} \left[\overline{l_L} W^- (1 + 4\eta) \nu_L + h.c. \right] - \frac{g}{2} \overline{l_L} W^3 (1 + 8\eta) l_L$$

Type III See-Saw:
$$\eta = \frac{v^{2}}{4}c^{d=6}$$

$$\Rightarrow \mathcal{L}_{lept.} = i\overline{\nu_{L}} \not \partial (1 + 2\eta) \nu_{L} + i\overline{l_{L}} \not \partial (1 + 4\eta) l_{L} + \frac{g}{\sqrt{2}} \left[\overline{l_{L}} \not W^{-} (1 + 4\eta) \nu_{L} + \text{h.c.} \right] - \frac{g}{2} \overline{l_{L}} \not W^{3} (1 + 8\eta) l_{L}$$

Type III See-Saw:
$$\eta = \frac{v^{2}}{4}c^{d=6}$$

$$\Rightarrow \mathcal{L}_{lept.} = i\overline{\nu_{L}} \partial \underbrace{(1+2\eta)}\nu_{L} + i\overline{l_{L}} \partial \underbrace{(1+4\eta)}l_{L} + \frac{g}{\sqrt{2}} \left[\overline{l_{L}} W^{-} (1+4\eta) \nu_{L} + \text{h.c.}\right] - \frac{g}{2} \overline{l_{L}} W^{3} (1+8\eta) l_{L}$$

 $\eta = \frac{v^2}{4}c^{d=6}$

$$\delta \mathcal{L}^{d=6} \implies \mathcal{L}_{lept.} = i \overline{\nu_L} \partial (1 + 2\eta) \nu_L + i \overline{l_L} \partial (1 + 4\eta) l_L + \frac{g}{\sqrt{2}} \left[\overline{l_L} W^- (1 + 4\eta) \nu_L + \text{h.c.} \right] - \frac{g}{2} \overline{l_L} W^3 (1 + 8\eta) l_L$$

$$\begin{cases} \nu_L \to (1 - 2\eta)^{\frac{1}{2}} \nu_L \\ l_L \to (1 - 4\eta)^{\frac{1}{2}} l_L \end{cases}$$

 $\eta = \frac{v^2}{4}c^{d=6}$

$$\delta \mathcal{L}^{d=6} \implies \mathcal{L}_{lept.} = i \overline{\nu_L} \partial (1 + 2\eta) \nu_L + i \overline{l_L} \partial (1 + 4\eta) l_L + \frac{g}{\sqrt{2}} \left[\overline{l_L} W^- (1 + 4\eta) \nu_L + \text{h.c.} \right] - \frac{g}{2} \overline{l_L} W^3 (1 + 8\eta) l_L$$

$$\begin{cases} \nu_L \to (1-2\eta)^{\frac{1}{2}} \nu_L \\ l_L \to (1-4\eta)^{\frac{1}{2}} l_L \end{cases} \implies \mathcal{L}^{CC}, \mathcal{L}^{NC} \text{ change}$$

$$\mathcal{L}^{CC}, \mathcal{L}^{NC}$$
 change \Longrightarrow

$$\mathcal{L}^{CC}, \mathcal{L}^{NC}$$
 change \Longrightarrow

⇒ tree-level FCNC for charged leptons

 $\mathcal{L}^{CC}, \mathcal{L}^{NC}$ change \Longrightarrow not there in Type I See-Saw! \Longrightarrow tree-level FCNC for charged leptons

$$\mathcal{L}^{CC}, \mathcal{L}^{NC}$$
 change \Longrightarrow

tree-level FCNC for charged leptons?

$$\Longrightarrow U_{PMNS} \to N = (1 + \eta) U_{PMNS}$$

not there in Type I See-Saw!

$$\mathcal{L}^{CC}, \mathcal{L}^{NC}$$
 change \Longrightarrow not there in Type I See-Saw! \Longrightarrow $U_{PMNS} \to N = (1+\eta)\,U_{PMNS}$ NOT UNITARY!

$$\mathcal{L}^{CC}, \mathcal{L}^{NC}$$
 change \Longrightarrow

not there in Type I See-Saw!

tree-level FCNC for charged leptons

$$\Longrightarrow U_{PMNS} \to N = (1 + \eta) U_{PMNS}$$
 NOT UNITARY!

Phenomenology:

Phenomenology:

- $\frac{\text{LFC:}}{\bullet \quad \mu \to e\nu\overline{\nu}}$
- $l_{\alpha} \rightarrow l_{\beta} \nu \overline{\nu}$
- $\pi^+ \to \bar{l}\nu$
- $W \to l\overline{\nu}$
- $Z \to l_{\alpha} \overline{l_{\alpha}}$
- $Z \to \nu \overline{\nu}$

$$\Gamma \sim \Gamma_{SM} \left(1 + \eta_{\alpha\alpha}\right)$$

$$\eta = \frac{1}{2} m_D^{\dagger} \frac{1}{M^{\dagger}} \frac{1}{M} m_D$$

Phenomenology:

$$\frac{\text{LFC:}}{\bullet} \quad \mu \to e\nu\overline{\nu}$$

•
$$l_{\alpha} \rightarrow l_{\beta} \nu \overline{\nu}$$

•
$$\pi^+ \to \bar{l}\nu$$

•
$$W \to l\overline{\nu}$$

•
$$Z \to l_{\alpha} \overline{l_{\alpha}}$$

•
$$Z \to \nu \overline{\nu}$$

$$LFV: \atop \bullet \ l_{\alpha} \to l_{\beta} l_{\beta} \overline{l_{\beta}}$$

•
$$\tau \to l_{\alpha} l_{\beta} \overline{l_{\beta}}$$

$$\begin{array}{c} \bullet \ \tau \to l_{\alpha}l_{\beta}\underline{l_{\beta}} \\ \bullet \ \tau \to l_{\alpha}\underline{l_{\alpha}}\underline{l_{\beta}} \end{array}$$

•
$$Z \to l_{\alpha} \overline{l_{\beta}}$$

• $H \to l_{\alpha} \overline{l_{\beta}}$

•
$$H \to l_{\alpha} \overline{l_{\beta}}$$

$$\Gamma \sim \Gamma_{SM} \left(1 + \eta_{\alpha\alpha} \right) \qquad \qquad \Gamma \sim f \left(SM \right) \left| \eta_{\alpha\beta} \right|^2$$

$$\eta = \frac{1}{2} m_D^{\dagger} \frac{1}{M^{\dagger}} \frac{1}{M} m_D$$

we estimate $m_{\nu} \sim 1 eV$

we estimate $m_{\nu} \sim 1 eV$ we expect $m_D \sim m_{lept.} \sim \Lambda_{EW}$

we estimate $m_{\nu} \sim 1 eV$ we expect $m_D \sim m_{lept.} \sim \Lambda_{EW}$ \Longrightarrow $M \sim 10^{15} GeV$

we estimate
$$m_{\nu} \sim 1 eV$$

we expect $m_D \sim m_{lept.} \sim \Lambda_{EW}$ \Longrightarrow $M \sim 10^{15} GeV$

$$\Rightarrow \eta = \frac{1}{2} m_D^{\dagger} \frac{1}{M^{\dagger}} \frac{1}{M} m_D \sim 10^{-30} !!!$$
 undetectable!

we estimate
$$m_{\nu} \sim 1 eV$$

we expect $m_D \sim m_{lept.} \sim \Lambda_{EW}$ \Longrightarrow $M \sim 10^{15} GeV$

$$\Rightarrow \eta = \frac{1}{2} m_D^{\dagger} \frac{1}{M^{\dagger}} \frac{1}{M} m_D \sim 10^{-30} !!!$$
 undetectable!

can one have

$$c^{d=5} \sim m_{\nu} = small$$

we estimate
$$m_{\nu} \sim 1 eV$$

we expect $m_D \sim m_{lept.} \sim \Lambda_{EW}$ \Longrightarrow $M \sim 10^{15} GeV$

$$\Rightarrow \eta = \frac{1}{2} m_D^{\dagger} \frac{1}{M^{\dagger}} \frac{1}{M} m_D \sim 10^{-30} !!!$$
 undetectable!

can one have

$$c^{d=5} \sim m_{\nu} = small$$

but also

$$c^{d=6} \sim \eta = big?$$

 m_D , M are matrices

 m_D , M are matrices

$$\implies \text{ cancellations in } c^{d=5} = Y_{\Sigma}^T \frac{1}{M} Y_{\Sigma}$$
 but NOT in
$$c^{d=6} = Y_{\Sigma}^\dagger \frac{1}{M^\dagger} \frac{1}{M} Y_{\Sigma}$$

 m_D , M are matrices

$$\implies \text{ cancellations in } c^{d=5} = Y_{\Sigma}^T \frac{1}{M} Y_{\Sigma}$$
 but NOT in
$$c^{d=6} = Y_{\Sigma}^\dagger \frac{1}{M^\dagger} \frac{1}{M} Y_{\Sigma}$$

but why?

Good idea #2: a symmetry, of course!

Good idea #2: a symmetry, of course!

L approximate symmetry

Good idea #2: a symmetry, of course!

L approximate symmetry

Weinberg operator violates $L \implies c^{d=5} \sim m_{\nu} = small$

Good idea #2: a symmetry, of course!

L approximate symmetry

Weinberg operator violates $L \implies c^{d=5} \sim m_{\nu} = small$ d=6 operator preserves $L \implies c^{d=6} \sim \eta = whatever$

L exact:
$$L_e = L_{\mu} = L_{\tau} = L_{\Sigma_1} = -L_{\Sigma_2} = 1, \quad L_{\Sigma_3} = 0$$

$$L \text{ exact:} \qquad L_e = L_\mu = L_\tau = L_{\Sigma_1} = -L_{\Sigma_2} = 1, \quad L_{\Sigma_3} = 0$$

$$m_D = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad M = \begin{pmatrix} 0 & \Lambda & 0 \\ \Lambda & 0 & 0 \\ 0 & 0 & \Lambda' \end{pmatrix}$$

L exact:
$$L_e = L_{\mu} = L_{\tau} = L_{\Sigma_1} = -L_{\Sigma_2} = 1, \quad L_{\Sigma_3} = 0$$

$$m_D = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad M = \begin{pmatrix} 0 & \Lambda & 0 \\ \Lambda & 0 & 0 \\ 0 & 0 & \Lambda' \end{pmatrix}$$

$$\Longrightarrow$$
 $m_{\nu}=0$

massless neutrinos

L exact:
$$L_e = L_{\mu} = L_{\tau} = L_{\Sigma_1} = -L_{\Sigma_2} = 1, \quad L_{\Sigma_3} = 0$$

$$m_D = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad M = \begin{pmatrix} 0 & \Lambda & 0 \\ \Lambda & 0 & 0 \\ 0 & 0 & \Lambda' \end{pmatrix}$$

$$\Longrightarrow$$
 $m_{\nu}=0$ massless neutrinos

$$m_{
u}=0$$
 massless neutrinos $M_{\Sigma_1}=M_{\Sigma_2}=\Lambda$ Σ_1 and Σ_2 form a Dirac pair

L exact:
$$L_e = L_{\mu} = L_{\tau} = L_{\Sigma_1} = -L_{\Sigma_2} = 1, \quad L_{\Sigma_3} = 0$$

$$m_D = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad M = \begin{pmatrix} 0 & \Lambda & 0 \\ \Lambda & 0 & 0 \\ 0 & 0 & \Lambda' \end{pmatrix}$$

$$m_{
u}=0$$
 mas $M_{\Sigma_1}=M_{\Sigma_2}=\Lambda$ Σ_1 $M_{\Sigma_3}=\Lambda'$ decorated

massless neutrinos

 $M_{\Sigma_1} = M_{\Sigma_2} = \Lambda$ Σ_1 and Σ_2 form a Dirac pair $M_{\Sigma_3} = \Lambda'$ decoupled Majorana fermion

L exact:
$$L_e = L_{\mu} = L_{\tau} = L_{\Sigma_1} = -L_{\Sigma_2} = 1, \quad L_{\Sigma_3} = 0$$

$$m_D = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad M = \begin{pmatrix} 0 & \Lambda & 0 \\ \Lambda & 0 & 0 \\ 0 & 0 & \Lambda' \end{pmatrix}$$

$$\implies m_{\nu} = 0$$

massless neutrinos

$$M_{\Sigma_1} = M_{\Sigma_2} = \Lambda$$

 $M_{\Sigma_1} = M_{\Sigma_2} = \Lambda$ Σ_1 and Σ_2 form a Dirac pair

$$M_{\Sigma_3} = \Lambda'$$

decoupled Majorana fermion

but:
$$\eta = \frac{1}{2} m_D^{\dagger} \frac{1}{M^{\dagger}} \frac{1}{M} m_D \neq 0$$

L approximate:

$$m_D = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ \varepsilon_1 Y_{\Sigma_{2e}} & \varepsilon_1 Y_{\Sigma_{2\mu}} & \varepsilon_1 Y_{\Sigma_{2\tau}} \\ \varepsilon_2 Y_{\Sigma_{3e}} & \varepsilon_2 Y_{\Sigma_{3\mu}} & \varepsilon_2 Y_{\Sigma_{3\tau}} \end{pmatrix}, \qquad M = \begin{pmatrix} \mu_1 & \Lambda & \mu_3 \\ \Lambda & \mu_2 & \mu_4 \\ \mu_3 & \mu_4 & \Lambda' \end{pmatrix}$$

$$m_D = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ \varepsilon_1 Y_{\Sigma_{2e}} & \varepsilon_1 Y_{\Sigma_{2\mu}} & \varepsilon_1 Y_{\Sigma_{2\tau}} \\ \varepsilon_2 Y_{\Sigma_{3e}} & \varepsilon_2 Y_{\Sigma_{3\mu}} & \varepsilon_2 Y_{\Sigma_{3\tau}} \end{pmatrix}, \qquad M = \begin{pmatrix} \mu_1 & \Lambda & \mu_3 \\ \Lambda & \mu_2 & \mu_4 \\ \mu_3 & \mu_4 & \Lambda' \end{pmatrix}$$

$$\implies m_{\nu} \sim f(Y) \frac{v^2}{2} \frac{\mu}{\Lambda^2}$$

$$m_{D} = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ \varepsilon_{1} Y_{\Sigma_{2e}} & \varepsilon_{1} Y_{\Sigma_{2\mu}} & \varepsilon_{1} Y_{\Sigma_{2\tau}} \\ \varepsilon_{2} Y_{\Sigma_{3e}} & \varepsilon_{2} Y_{\Sigma_{3\mu}} & \varepsilon_{2} Y_{\Sigma_{3\tau}} \end{pmatrix}, \qquad M = \begin{pmatrix} \mu_{1} & \Lambda & \mu_{3} \\ \Lambda & \mu_{2} & \mu_{4} \\ \mu_{3} & \mu_{4} & \Lambda' \end{pmatrix}$$

$$\implies m_{\nu} \sim f(Y) \frac{v^2}{2} \frac{\mu}{\Lambda^2}$$

$$\eta \sim g(Y) \frac{v^2}{2} \frac{1}{\Lambda^2}$$

$$\begin{split} Y_{\tau} = & \frac{1}{m_{e\mu}^{2} - m_{ee}m_{\mu\mu}} \left(Y_{e} \left(m_{e\mu}m_{\mu\tau} - m_{e\tau}m_{\mu\mu} \right) + \right. \\ & + Y_{\mu} \left(m_{e\mu}m_{e\tau} - m_{ee}m_{\mu\tau} \right) - \sqrt{Y_{e}^{2}m_{\mu\mu} - 2Y_{e}Y_{\mu}m_{e\mu} + Y_{\mu}^{2}m_{ee}} \times \\ & \times \sqrt{m_{e\tau}^{2}m_{\mu\mu} - 2m_{e\mu}m_{e\tau}m_{\mu\tau} + m_{ee}m_{\mu\tau}^{2} + m_{e\mu}^{2}m_{\tau\tau} - m_{ee}m_{\mu\mu}m_{\tau\tau}} \right) \end{split}$$

$$L_e = L_\mu = L_\tau = L_{\Sigma_1} = -L_{\Sigma_2} = 1$$

L exact:

$$L_e = L_\mu = L_\tau = L_{\Sigma_1} = -L_{\Sigma_2} = 1$$

$$m_D = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ 0 & 0 & 0 \end{pmatrix}, \qquad M = \begin{pmatrix} 0 & \Lambda \\ \Lambda & 0 \end{pmatrix}$$

L exact:

$$L_e = L_\mu = L_\tau = L_{\Sigma_1} = -L_{\Sigma_2} = 1$$

$$m_D = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ 0 & 0 & 0 \end{pmatrix}, \qquad M = \begin{pmatrix} 0 & \Lambda \\ \Lambda & 0 \end{pmatrix}$$

$$\Longrightarrow$$
 $m_{\nu}=0$

massless neutrinos

L exact:

$$L_e = L_\mu = L_\tau = L_{\Sigma_1} = -L_{\Sigma_2} = 1$$

$$m_D = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ 0 & 0 & 0 \end{pmatrix}, \qquad M = \begin{pmatrix} 0 & \Lambda \\ \Lambda & 0 \end{pmatrix}$$

$$\Longrightarrow$$
 $m_{\nu}=0$

$$M_{\Sigma_1} = M_{\Sigma_2} = \Lambda$$

$$\Longrightarrow m_{
u}=0$$
 massless neutrinos $M_{\Sigma_1}=M_{\Sigma_2}=\Lambda$ Σ_1 and Σ_2 form a Dirac pair

L exact:

$$L_e = L_\mu = L_\tau = L_{\Sigma_1} = -L_{\Sigma_2} = 1$$

$$m_D = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ 0 & 0 & 0 \end{pmatrix}, \qquad M = \begin{pmatrix} 0 & \Lambda \\ \Lambda & 0 \end{pmatrix}$$

 $\Longrightarrow m_{
u}=0$ massless neutrinos $M_{\Sigma_1}=M_{\Sigma_2}=\Lambda$ Σ_1 and Σ_2 form a Dirac pair

but again:

$$\eta = \frac{1}{2} m_D^{\dagger} \frac{1}{M^{\dagger}} \frac{1}{M} m_D \neq 0$$

$$m_D = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ \varepsilon_1 Y_{\Sigma_{2e}} & \varepsilon_1 Y_{\Sigma_{2\mu}} & \varepsilon_1 Y_{\Sigma_{2\tau}} \end{pmatrix}, \qquad M = \begin{pmatrix} \mu_1 & \Lambda \\ \Lambda & \mu_2 \end{pmatrix}$$

$$m_D = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ \varepsilon_1 Y_{\Sigma_{2e}} & \varepsilon_1 Y_{\Sigma_{2\mu}} & \varepsilon_1 Y_{\Sigma_{2\tau}} \end{pmatrix}, \qquad M = \begin{pmatrix} \mu_1 & \Lambda \\ \Lambda & \mu_2 \end{pmatrix}$$

again
$$\Longrightarrow m_{\nu} \sim f(Y) \frac{v^2}{2} \frac{\mu}{\Lambda^2}$$

$$m_D = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ \varepsilon_1 Y_{\Sigma_{2e}} & \varepsilon_1 Y_{\Sigma_{2\mu}} & \varepsilon_1 Y_{\Sigma_{2\tau}} \end{pmatrix}, \qquad M = \begin{pmatrix} \mu_1 & \Lambda \\ \Lambda & \mu_2 \end{pmatrix}$$

again
$$\Longrightarrow m_{\nu} \sim f(Y) \frac{v^2}{2} \frac{\mu}{\Lambda^2}$$

$$\eta \sim g(Y) \frac{v^2}{2} \frac{1}{\Lambda^2}$$

L approximate:

$$m_D = \frac{v}{\sqrt{2}} \begin{pmatrix} Y_{\Sigma_{1e}} & Y_{\Sigma_{1\mu}} & Y_{\Sigma_{1\tau}} \\ \varepsilon_1 Y_{\Sigma_{2e}} & \varepsilon_1 Y_{\Sigma_{2\mu}} & \varepsilon_1 Y_{\Sigma_{2\tau}} \end{pmatrix}, \qquad M = \begin{pmatrix} \mu_1 & \Lambda \\ \Lambda & \mu_2 \end{pmatrix}$$

again
$$\Longrightarrow m_{\nu} \sim f(Y) \frac{v^2}{2} \frac{\mu}{\Lambda^2}$$

$$\eta \sim g(Y) \frac{v^2}{2} \frac{1}{\Lambda^2}$$

but this time more stringent relations!

$$Y_{\mu} = \frac{m_{e\mu} \pm \sqrt{m_{e\mu}^2 - m_{ee}m_{\mu\mu}}}{m_{ee}} Y_e$$

$$Y_{\mu} = \frac{m_{e\mu} \pm \sqrt{m_{e\mu}^2 - m_{ee} m_{\mu\mu}}}{m_{ee}} Y_e$$

$$Y_{\tau} = \frac{m_{e\tau} \pm \sqrt{m_{e\tau}^2 - m_{ee} m_{\tau\tau}}}{m_{ee}} Y_e$$

$$\begin{split} Y_{\mu} &= \frac{m_{e\mu} \pm \sqrt{m_{e\mu}^2 - m_{ee} m_{\mu\mu}}}{m_{ee}} Y_e \\ Y_{\tau} &= \frac{m_{e\tau} \pm \sqrt{m_{e\tau}^2 - m_{ee} m_{\tau\tau}}}{m_{ee}} Y_e \\ m_{ee} m_{\mu\tau} &= m_{e\mu} m_{e\tau} - s_{\mu} s_{\tau} \sqrt{\left(m_{e\mu}^2 - m_{ee} m_{\mu\mu}\right) \left(m_{e\tau}^2 - m_{ee} m_{\tau\tau}\right)} \end{split}$$

$$\begin{split} Y_{\mu} &= \frac{m_{e\mu} \pm \sqrt{m_{e\mu}^2 - m_{ee} m_{\mu\mu}}}{m_{ee}} Y_e \\ Y_{\tau} &= \frac{m_{e\tau} \pm \sqrt{m_{e\tau}^2 - m_{ee} m_{\tau\tau}}}{m_{ee}} Y_e \\ m_{ee} \\ m_{ee} \\ m_{ee} \\ m_{\mu\tau} &= m_{e\mu} m_{e\tau} - s_{\mu} s_{\tau} \sqrt{\left(m_{e\mu}^2 - m_{ee} m_{\mu\mu}\right) \left(m_{e\tau}^2 - m_{ee} m_{\tau\tau}\right)} \end{split}$$

$$Y_{\mu} = \frac{m_{e\mu} \pm \sqrt{m_{e\mu}^2 - m_{ee} m_{\mu\mu}}}{m_{ee}} Y_{e}$$

$$Y_{\tau} = \frac{m_{e\tau} \pm \sqrt{m_{e\tau}^2 - m_{ee} m_{\tau\tau}}}{m_{ee}} Y_{e}$$

$$m_{ee} m_{\mu\tau} = m_{e\mu} m_{e\tau} - s_{\mu} s_{\tau} \sqrt{\left(m_{e\mu}^2 - m_{ee} m_{\mu\mu}\right) \left(m_{e\tau}^2 - m_{ee} m_{\tau\tau}\right)}$$

$$m_{ee}m_{\mu\tau} = m_{e\mu}m_{e\tau} - s_{\mu}s_{\tau}\sqrt{\left(m_{e\mu}^2 - m_{ee}m_{\mu\mu}\right)\left(m_{e\tau}^2 - m_{ee}m_{\tau\tau}\right)}$$

$$\Rightarrow \text{ constrains Majorana phase } \varphi :$$

$$U_{PMNS}^{2\Sigma} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i\varphi} \end{pmatrix}$$

$$-m_{ee}m_{\mu\tau} = m_{e\mu}m_{e\tau} - s_{\mu}s_{\tau}\sqrt{\left(m_{e\mu}^2 - m_{ee}m_{\mu\mu}\right)\left(m_{e\tau}^2 - m_{ee}m_{\tau\tau}\right)}$$

ightharpoonup constrains Majorana phase $\overset{\downarrow}{\varphi}$:

• If
$$s_{\mu}s_{\tau}=+1$$
, $\varphi\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ (NH) or $\varphi\in\left(\frac{\pi}{2},\frac{3\pi}{2}\right)$ (IH)

$$U_{PMNS}^{2\Sigma} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i\varphi} \end{pmatrix}$$

$$m_{ee}m_{\mu\tau} = m_{e\mu}m_{e\tau} - s_{\mu}s_{\tau}\sqrt{\left(m_{e\mu}^2 - m_{ee}m_{\mu\mu}\right)\left(m_{e\tau}^2 - m_{ee}m_{\tau\tau}\right)}$$

constrains Majorana phase $\dot{\varphi}$:

- If $s_{\mu}s_{\tau} = +1$, $\varphi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (NH) or $\varphi \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ (IH) If $s_{\mu}s_{\tau} = -1$, $\varphi \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ (NH) or $\varphi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (IH)

$$U_{PMNS}^{2\Sigma} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i\varphi} \end{pmatrix}$$

Goal: find constraints on η

Goal: find constraints on η

Goal: find constraints on η

26 observables as functions of α , M_Z , G_F :

W mass

Goal: find constraints on η

- W mass
- ratios of Z fermionic decays

Goal: find constraints on η

- W mass
- ratios of Z fermionic decays
- invisible width of Z

Goal: find constraints on η

- W mass
- ratios of Z fermionic decays
- invisible width of Z
- ratios of weak decays constraining EW universality

Goal: find constraints on η

- W mass
- ratios of Z fermionic decays
- invisible width of Z
- ratios of weak decays constraining EW universality
- weak decays constraining CKM unitarity

Goal: find constraints on η

- W mass
- ratios of Z fermionic decays
- invisible width of Z
- ratios of weak decays constraining EW universality
- weak decays constraining CKM unitarity
- LFV processes: $\mu \to e \, (\mathrm{Ti}) \,, \, \tau \to e \gamma, \, \tau \to \mu \gamma$

Free parameters:

General case:

Free parameters:

General case:

• all entries of η

Free parameters:

General case: 3 triplets:

• all entries of η

Free parameters:

General case: 3 triplets:

• all entries of η • $Y_e Y_\mu$

Free parameters:

General case:

• all entries of η

- $Y_e Y_\mu$
- ϕ_e phase of Y_e

Free parameters:

General case:

• all entries of η

- $Y_e Y_\mu$
- ϕ_e phase of Y_e
- $Y_e Y_\mu$

Free parameters:

General case:

• all entries of η

- $Y_e Y_\mu$
- ϕ_e phase of Y_e
- $Y_e Y_\mu$
- ϕ_{μ} phase of Y_{μ}

Free parameters:

General case:

• all entries of η

- $Y_e Y_\mu$
- ϕ_e phase of Y_e
- $Y_e Y_\mu$
- ϕ_{μ} phase of Y_{μ}
- δ Dirac phase

Free parameters:

General case:

• all entries of η

- $Y_e Y_\mu$
- ϕ_e phase of Y_e
- $Y_e Y_\mu$
- ϕ_{μ} phase of Y_{μ}
- δ Dirac phase
- φ_1 first Majorana phase

Free parameters:

General case:

• all entries of η

- $Y_e Y_\mu$
- ϕ_e phase of Y_e
- $Y_e Y_\mu$
- ϕ_{μ} phase of Y_{μ}
- δ Dirac phase
- φ_1 first Majorana phase
- φ_2 second Majorana phase

Free parameters:

General case:

• all entries of η

- $Y_e Y_\mu$
- ϕ_e phase of Y_e
- $Y_e Y_\mu$
- ϕ_{μ} phase of Y_{μ}
- δ Dirac phase
- φ_1 first Majorana phase
- φ_2 second Majorana phase
- m_0 lightest neutrino mass

Free parameters:

General case:

• all entries of η

3 triplets:

- $Y_e Y_\mu$
- ϕ_e phase of Y_e
- $Y_e Y_\mu$
- ϕ_{μ} phase of Y_{μ}
- δ Dirac phase
- φ_1 first Majorana phase
- φ_2 second Majorana phase
- m_0 lightest neutrino mass

Free parameters:

General case:

• all entries of η

3 triplets:

- $Y_e Y_\mu$
- ϕ_e phase of Y_e
- $Y_e Y_\mu$
- ϕ_{μ} phase of Y_{μ}
- δ Dirac phase
- φ_1 first Majorana phase
- φ_2 second Majorana phase
- m_0 lightest neutrino mass

2 triplets:

 $\bullet Y_e$

Free parameters:

General case:

• all entries of η

3 triplets:

- $Y_e Y_\mu$
- ϕ_e phase of Y_e
- $Y_e Y_\mu$
- ϕ_{μ} phase of Y_{μ}
- δ Dirac phase
- φ_1 first Majorana phase
- φ_2 second Majorana phase
- m_0 lightest neutrino mass

- $\bullet Y_e$
- δ Dirac phase

Free parameters:

General case:

• all entries of η

3 triplets:

- $Y_e Y_\mu$
- ϕ_e phase of Y_e
- $Y_e Y_\mu$
- ϕ_{μ} phase of Y_{μ}
- δ Dirac phase
- φ_1 first Majorana phase
- φ_2 second Majorana phase
- m_0 lightest neutrino mass

- $\bullet Y_e$
- δ Dirac phase
- φ Majorana phase

Preliminary results: General scenario

$$\sqrt{2\eta_{e\mu}} < 7.7 \cdot 10^{-4} \qquad \sqrt{2\eta_{e\tau}} < 0.024 \qquad \sqrt{2\eta_{\mu\tau}} < 0.033$$

$$\sqrt{2\eta_{\mu\tau}} < 0.033 \qquad (2\sigma)$$

Preliminary results: 3 triplets scenario

Preliminary results: 2 triplets scenario

		General	3 triplets			
		General	NH			
$\sqrt{2\eta_{ee}}$	1σ	< 0.015	< 0.0037			
	2σ	< 0.027	< 0.025			
$\sqrt{2\eta_{\mu\mu}}$	1σ	< 0.028	< 0.027			
	2σ	< 0.034	< 0.034			
$\sqrt{2\eta_{\tau\tau}}$	1σ	< 0.024	< 0.024			
	2σ	< 0.043	< 0.042			< 0.0023
$\sqrt{2\eta_{e\mu}}$	1σ	$< 6.5 \cdot 10^{-4}$	$< 6.4 \cdot 10^{-4}$			
	2σ	< 7.7· 10 ⁻⁴	$< 7.6 \cdot 10^{-4}$	$<7.7\cdot10^{-4}$	$< 7.7 \cdot 10^{-4}$	$<7.7\cdotp10^{-4}$
$\sqrt{2\eta_{e\tau}}$	1σ	< 0.012	< 0.0019			
	2σ	< 0.024	< 0.023	< 0.052	< 0.0028	< 0.0019
$\sqrt{2\eta_{\mu\tau}}$	1σ	< 0.022	< 0.023			
	2σ	< 0.033	< 0.032			< 0.0097

		General	3 triplets		2 triplets	
			NH	IH	NH	
$\sqrt{2\eta_{ee}}$	1σ	< 0.015	< 0.0037	$0.032^{+0.010}_{-0.012}$	$< 6.9 \cdot 10^{-4}$	
	2σ	< 0.027	< 0.025	< 0.025	< 0.084	
$\sqrt{2\eta_{\mu\mu}}$	1σ	< 0.028	< 0.027	$< 3.7 \cdot 10^{-4}$	< 0.0010	
	2σ	< 0.034	< 0.034	< 0.020	< 0.0012	
$\sqrt{2\eta_{\tau\tau}}$	1σ	< 0.024	< 0.024	$0.040^{+0.018}_{-0.036}$	< 0.0077	
	2σ	< 0.043	< 0.042	< 0.066	< 0.0093	< 0.0023
$\sqrt{2\eta_{e\mu}}$	1σ	$< 6.5 \cdot 10^{-4}$	$< 6.4 \cdot 10^{-4}$	$< 6.4 \cdot 10^{-4}$	$< 6.5 \cdot 10^{-4}$	
	2σ	$< 7.7 \cdot 10^{-4}$	$< 7.6 \cdot 10^{-4}$	< 7.7· 10 ⁻⁴	$< 7.7 \cdot 10^{-4}$	$<7.7\cdot10^{-4}$
$\sqrt{2\eta_{e\tau}}$	1σ	< 0.012	< 0.0019	$0.036^{+0.010}_{-0.023}$	< 0.023	
	2σ	< 0.024	< 0.023	< 0.052	< 0.0028	< 0.0019
$\sqrt{2\eta_{\mu\tau}}$	1σ	< 0.022	< 0.023	$< 9.3 \cdot 10^{-7}$	< 0.021	
	2σ	< 0.033	< 0.032	< 0.032	< 0.025	< 0.0097

		General	3 triplets		2 triplets	
			NH	IH	NH	IH
$\sqrt{2\eta_{ee}}$	1σ	< 0.015	< 0.0037	$0.032^{+0.010}_{-0.012}$	$< 6.9 \cdot 10^{-4}$	< 0.0026
	2σ	< 0.027	< 0.025	< 0.025	$< 8.4\cdot 10^{-4}$	< 0.0032
$\sqrt{2\eta_{\mu\mu}}$	1σ	< 0.028	< 0.027	$< 3.7 \cdot 10^{-4}$	< 0.0010	$< 5.5 \cdot 10^{-4}$
	2σ	< 0.034	< 0.034	< 0.020	< 0.0012	$< 6.6\cdot 10^{-4}$
$\sqrt{2\eta_{\tau\tau}}$	1σ	< 0.024	< 0.024	$0.040^{+0.018}_{-0.036}$	< 0.0077	< 0.0020
	2σ	< 0.043	< 0.042	< 0.066	< 0.0093	< 0.0023
$\sqrt{2\eta_{e\mu}}$	1σ	$< 6.5 \cdot 10^{-4}$	$< 6.4 \cdot 10^{-4}$	$< 6.4 \cdot 10^{-4}$	$< 6.5 \cdot 10^{-4}$	$< 6.5 \cdot 10^{-4}$
	2σ	$< 7.7 \cdot 10^{-4}$	$< 7.6 \cdot 10^{-4}$	< 7.7· 10 ⁻⁴	< 7.7· 10 ⁻⁴	< 7.7· 10 ⁻⁴
$\sqrt{2\eta_{e\tau}}$	1σ	< 0.012	< 0.0019	$0.036^{+0.010}_{-0.023}$	< 0.0023	< 0.0016
	2σ	< 0.024	< 0.023	< 0.052	< 0.0028	< 0.0019
$\sqrt{2\eta_{\mu\tau}}$	1σ	< 0.022	< 0.023	$< 9.3 \cdot 10^{-7}$	< 0.021	< 0.0082
	2σ	< 0.033	< 0.032	< 0.032	< 0.025	< 0.0097

Conclusions

- Neutrinos are massive, but we don't know why
- The see-saw mechanism can explain small neutrino masses
- We studied the type III see-saw
- If *L* is an approximate symmetry:
 - ➤ Interesting correlations in mass matrix
 - ➤ Potentially large (detectable!) effects
- We are placing new bounds on the parameters of the models with 3 or 2 triplets (for both Normal and Inverted Hierarchy)