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introduction :: compactification |

String theory unifies gravity and gauge interactions —— employ it for the description of our universe.

String theory is consistent only in ten dimensions — need to compactify from 10D to 4D ::

= [he compact space Mg strongly affects the 4D theory,
SO understanding such spaces is important.

= [here Is a large number of choices for the compact M @

space (string-theory landscape).

= \When are two compact spaces considered to be
"different" ..." e



introduction :: dualities |

Duality :: two different theories are dual to each other, if they describe the same physics.
Example :: electrodynamics in four dimensions (without sources) ::

= gction functional S = —% / FAXE,

» Bianchi identity di" =0,

= equation of motion dxF =0,

= duality transformation F — xF'.



introduction :: dualities ||

String theory has a rich structure of dualities ::

S-duality

U-duality

AdS/CFT correspondence

open-/closed-string duality

T-duality

mirror symmetry

type lIA/M-theory duality

heterotic/type [IA duality

heterotic/M-theory duality




introduction :: compactification |l

When are two compact spaces considered
to be "different" ...”

... when they are not related via a duality
transformations.

|
-0.5 -0.25 0 0.25 0.5

Denef, Douglas - 2004



introduction :: summary

Summary :: = String theory Is a theory of quantum gravity including gauge interactions.
= [or describing our universe, need to compactify to four dimensions.

= Dualities are an integral part of string theory.
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non-geometry :: generalities

The equation of motion for a closed string (in the simplest setting) is the wave equation in two dimensions

= [he general solution splits into a left-moving and right-

moving part

XM(o) = X[ (07) + Xi(o7).

0 = 0,0“X"(0).

= |f both parts see the same geometry, the space is

geometric.

= |f the two parts see different geometries,
non-geometric (out well-defined for a stri

he space Is

NQ).
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non-geometry :: duality-backgrounds

Non-geometric spaces can be constructed using duality transformations ::

S-duality T-duality
= duality transformation gs — 1/gs » duality transformation R — 1/R
= monodromy around (p,q)-branes = monodromy around defects
contains S-duality may contain T-duality
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non-geometry :: t-duality |

T-duality :: = [wo string-theory compactifications on dual circles cannot be distinguished.

= [he duality group for the circle is Zs,.

= [-duality is a string-theory duality — not existing for point particles.



non-geometry :: t-duality Il

A string-theory background (in the NS-NS sector) is characterized by a choice of

= metric G,
= anti-symmetric two-form B,,,,
= dilaton @.

T-duality transformations act on (G, B, ®) in a non-trivial way.

For D -dimensional toroidal compactifications the duality group is O(D, D;7Z),

» which for O € O(D, D;Z) is specified by O ( ]? ]é )O: < ](i ]Ol >



non-geometry :: duality group

The duality group O(D, D;7Z) contains the elements ::

= A-transformations ( A € GL(D, 7))

A1 0
Oa = ( 0 AT> - difffomorphisms

= B-transformations ( B;; an anti-symmetric matrix)

1 0
O = ( N > g gauge transformations B — B + o'B

= 3-transformations ( 5%/ an anti-symmetric matrix)
(15
%= (0 1)

» factorized duality ( £, with only non-zero E; = 1)

2

]]. — Ei Z:Ei . . o'
O4; = ( B 1-E > g T-duality transformations Gj — %
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non-geometry :: fibrations |

he standard example for a non-geometric background is a T“-fibration over a circle.

(Gab, Bap) (X + 27)




non-geometry :: fibrations Il

The non-geometric background is part of a family of T“-fibrations ::

Ok On 05

() () ()

T with H-flux > - twisted T° - S T-fold




non-geometry :: three-torus with h-flux

A three-torus with H-flux is characterized as follows ::

1. Metric and B-field

R? 0 0 0 +2RX3 0
Gij: 0 R% 0 : Bij: —O‘—,hX?’ 0 0 : h e Z.
0

0 0 R2
2. The background is well-defined under X° — X* + 271 using a gauge transformation.

3. The H-flux H = dB can be expressed In a vielbein basis as

o h o’ h
et Ne? Ae?, His3 =

H = .
2T R1 RQ Rg 27T Rl RQ Rg




non-geometry :: twisted three-torus

After a T-duality along X' one obtains a twisted three-torus ::

1. Metric and B-field

[ % o e X3 0 0 0 0
\ 0 0 R} ) 000

2. The background is well-defined under X*® — X* + 27 using a diffeomorphism.

3. A geometric f-flux is defined via a vielbein basis as

o h
2T R1 RQ Rg .

1
de® = ifbcaeb/\ec, fZS1 —

Kachru, Schulz, Tripathy, Trivedi - 2002



non-geometry :: t-fold

A second T-duality along X? gives the T-fold background ::

1. Metric and B-field

(0 0 1 0 —ghX? 0 p="1E 4 [L X",
Gij = o £1 : Bi; = — +§‘—7ThX3 0 0 ],
\ 0 0 R? g 0 0 0 hel

2. The background is well-defined under X°® — X* + 27 using a g-transformation.

3. A non-geometric Q-flux is defined via a vielbein basis and (G — B)™' =g — 8 as

Q;7F = 9, pI* Q1% = o i .
‘ -t ’ 27T R1 RQ Rg

Hull - 2004



non-geometry :: fluxes

The above family of backgrounds is characterized by (non-)geometric fluxes ::

T with H-flux : - twisted T - S T-fold

1 12
Hyo3 f23 ()3



non-geometry :: fluxes

The above family of backgrounds is characterized by (non-)geometric fluxes ::

T with H-flux

twisted T

fas'

T-fold

Qs

R-space

Shelton, Taylor, Wecht - 2005
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non-geometry :: summary

Summary :: = [-duality Is a string-theory duality — not present for point-particle theories.
= Non-geometric backgrounds are well-defined using T-duality.

= Non-triviality of the background is encoded in (hon-)geometric fluxes.

= Non-geometric backgrounds are examples for compactification spaces.
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developments :: generalised geometry |

Non-geometric fluxes can be described using the framework of generalised geometry ::

» The generalised tangent-bundle E over a manifold M islocally £ =TM & T"M .
s Sections of F aregivenby X =z + ¢ with z e '(T'M) and €€ '(T™M).

» A bi-linear pairing on E (invariant under O(D, D) transformations) is

1

(X, Y)=(z+&y+x) = §(La;x+by€)-

m A natural bracket on E is the Courant bracket

1
[Xa Y]C — [xvy]L £:CX_[’y€_ §d(LxX_Ly€) °
= The Courant bracket is in general not a Lie bracket, since the Jacobiator satisfies

Jac(X,Y,Z) . =dNij(X,Y, Z) ..

Hitchin - 2002
Gualtieri - 2004



developments :: generalised geometry |

On the generalised tangent-bundle, a generalised metric can be introduced ::

G- BG'B +BG1
H = .
~G~ 1B G—1

A corresponding generalised vielbein

ga, ga,z'
_ oA Y _ i |
E={E"} ( g g >

(leaving invariant the pairing) is defined via the relations

0 1 5 0
_ ol _ T
n=_E (1 O)e, H=E (o 5_1>5.



developments :: generalised geometry |l

The dual vielbein €4 = {€4”} satisfies ab algebra [E4,E5] ., = Fa“ Ec .

m [he structure constant are identified with the fluxes

C C bc be abc abc
Fabc:Habca Fab :faba Fa :Qa 9 F = R .

= Bianchi identities (for constant fluxes) are determined from the Jacobiator
= =3 f1ap™ Hmlcd) ;
= =3 f1a™ fmig” + 3 Hiapjm Qg™
= — fap™ Q1 — 4fm[g[g Qb]mld] — Hy,, R4

= +3Q,"Q,, 4 +3 f,,2 Rm™cd

0= +3Q,,\2t gmlcd



outline

1. Introduction
2. non-geometry

3. developments

a) non-geometric fluxes

.

) non-commuting structures

O

) compactifications
)

outlook

Q.

4. conclusions



developments :: algebra of functions

A geometric space M can be described Iin terms of the
algebra of functions C'(M) on M.

Gelfand, Naimark - 1943

A non-commutative space Is characterized through a / 7/\4

non-commutative algebra of functions (e.g. Moyal-
Weyl *-product).

Connes - 1986

A non-associative space Is described by a non-associative algebra of functions.



developments :: non-associativity |

Result :: A non-geometric R-flux gives rise to a non-associative structure.

Consider a three-sphere with H-flux (SU (2) WZW model) ::

= Determine the following equal-time Jacobiator

XM XY XP| = lim |[X*(7,01), X" (7,02)], X’ (7,03)| + cyclic.

O;—>0

= After T-duality, one obtains

X", XY, XP| = 3m*RMP.
= [his behaviour is described by a non-associative tri-product of functions

(fl A fo A fg) (QZ‘) = exp(”; RFEVP 8ﬁ1 852 853) f1($1) fz(il?g) fg(ﬂ?g)

Lr1=Io2=—I3=T

Blumenhagen, Plauschinn - 2010



developments :: non-associativity Il

The non-associative property can also been seen from the
behaviour of vertex operators V; under permutations.

In an R-flux background one finds for o € S3

World-sheet sphere diagram with
< Va(l)Va(z)Vg(3)> = exp [if;TQ RHVP (pl)u (p2>y (pg)p 770} <V1 Vo V3> . three vertex-operator insertions.

This is an off-shell result — on-shell (that means p1 + p2 + p3 = 0) the phase factor is trivial.

Blumenhagen, Deser, LUst, Plauschinn, Rennecke - 2011



developments :: non-associative gravity?

Application :: = [he tri-product can be used for a non-associative differential geometry,

= and the construction of a non-associative gravity theory.

— Space-time is non-associative at small distances.

Blumenhagen, Plauschinn - 2010
Blumenhagen, Fuchs - 2016
Aschieri, Ciric, Szabo - 2017



developments :: non-commutativity |

Result :: A non-geometric Q-flux gives rise to a non-commutative structure.

Consider non-trivial T*-fibrations over the circle, parametrized by ©2° ::

= The fiber coordinates can be written as X® = X7 + X5 , with relations

Xi X2 =507, X1, XR] =0, X7 Xi] =565

= For a geometric background one finds ©3°® = —03° = © and [X?, X°] = 0.

= For a non-geometric background one obtains ©2° = +03° = ©2® and hence

X2, XP| =i0*.

Last - 2011



developments :: non-commutativity Il

Define an equal-time commutator between two closed-string coordinates in the following way

X' X% = lim [X'(1,01), X?(7,02)] .

O;—0

= For the T-fold background (parabolic monodromy) one finds a non-commutative
behaviour controlled by the Q-flux

.2
X7 =T gy,

= Other examples (elliptic monodromies) are provided by asymmetric orbifolds.

Andriot, Larfors, LUst, Patalong - 2012
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developments :: compactification

String-theory compactifications on Calabi-Yau three-folds ::

compact space

CYs CYs + fluxes H, f,Q, R
4D theory = NO potential generated = potential generated by fluxes

— massless scalar fields T, U 4.8 — massive scalar fields 1T, U A, S



developments :: scalar potential

The scalar potential in 4D (for a N=7 supergravity theory) is in general given by

V = Vi

Kahler potential superpotential W

Vp =

gauge-kinetic function f;;

moment maps P;



developments :: superpotential

For type IB compactifications on Calabi-Yau orientifolds M, fluxes contribute to the superpotential ::

W:/ O~ A (F3+DoT) = & dependson U4,
o = o dependson T¢, S,

» F3is a R-Rflux,

s D s atwisted differential.

The twisted differential D contains the NS-NS fluxes (derived via [-duality) ::

D=d +H

Shelton, Taylor, Wecht - 2005
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W:/ O~ A (F3+DoT) = & dependson U4,
o = o dependson T¢, S,

» F3is a R-Rflux,

s D s atwisted differential.

The twisted differential D contains the NS-NS fluxes (derived via [-duality) ::

H; ik dxt A dxd A dx®

D=D+H —F — R . .
* +Q Fijk dx* N dx? N .,

Q% dxt A Li N L,

T O W T
|
D= NI N O

RYF 1y AN vy A g

Shelton, Taylor, Wecht - 2005



developments :: fluxes

The fluxes in the twisted differential can e interpreted as operators

H : pform — (
F : pform — (
D = H—F —
a+ Q- R, Q : pform —
R : pform — (

p + 3)-form ,
p + 1)-form,
p — 1)-form,
p — 3)-form.

Aldazabal, Camara, Font, |Ibanez -
Villadoro, Zwirner -
Shelton, Taylor, Wecht -

When requiring nil-potency D? = 0, Bianchi identities for the fluxes can be derived.

Shelton, Taylor, Wecht -
Robins, Wrase -

2006
2006
2006

2006
2007



developments :: summary

Summary :: = Non-geometric fluxes are a natural part of string-theory compactifications.

= [-duality (mirror symmetry) requires geometric and non-geometric fluxes.

= Fuxes give masses to scalar fields.



outline

1. Introduction
2. non-geometry

3. developments

a) non-geometric fluxes

o

) non-commuting structures

) compactifications

o O

) outlook

4. conclusions



developments :: outlook

OutlooKk ::

Non-commutative & non-associative structures.

Moduli stabilization and inflation.

Origin for gauged supergravity theories.

Description via generalized & doubled geometry.

More general non-geometric torus-fibrations.

Blumenhagen, Plauschinn - 2010
List - 2010
Mylonas, Schupp, Szabo - 2012

Shelton, Taylor, Wecht - 2006
e.g. Blumenhagen, Herschmann, Plauschinn - 2014

Grana, Louis, Waldram - 2005
Cassani - 2008

Hull - 2004
Grana, Minasian, Petrini, Waldram - 2008

Hellermann, McGreevy, Williams - 2002
de Boer, Shigemori - 2012
LUst, Massai, Vall-Camell - 2015
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conclusions :: string theory

String theory :: m String theory is a theory of quantum gravity including gauge interactions.

= [he theory features a large number of dualities — including T-duality.

= [or a description of our universe, need to compactify.



conclusions :: non-geometry

Non-geometry :: = Non-geometric backgrounds are well-defined I-duality

using T-duality transformations. /\
= Such spaces are natural in string theory, but = @

iInconsistent for point particles.

= [he non-triviality of such backgrounds is

encoded in non-geometric fluxes. < \\// >

—_—

= Non-geometric fluxes give rise non-commutative & non-associative structures.



conclusions :: compactification

Compactification :: = Non-geometric backgrounds are examples CYs + fluxes ., f,Q, R

for compactification spaces.
= Fuxes generate masses for scalar fields
i

to match with experimental constraints.
m [-duality (mirror symmetry) relates different compactifications to each other.




