Poisson-Lie T-duality in Double Field Theory

Falk Hassler

University of Oviedo

based on

$$
\text { 1707.08624, } 1611.07978
$$

and

181?.????? with Saskia Demulder and Daniel Thompson

October 25th, 2018
Universidad de Oviedo
Universidá d'Uviéu
University of Oviedo

Motivation

Chris Hull Barton Zwiebach Olaf Hohm

Doubled Geometry

Double Field Theory

Motivation

Chris Hull

time

Motivation

Chris Hull
Barton Zwiebach Olaf Hohm
Fernando Quevedo Yolanda Lozano Ctirad Klimcik Daniel Thompson Dieter Lüst Ralph Blumenhagen Daniel Waldram Charles S-C. . .

Double Field Theory

Generalized Geometry time

Outline

1. Motivation
2. Poisson-Lie T-duality
3. Double Field Theory on Drinfeld doubles
4. Application: 1. Dilaton transformation
5. Summary

Drinfeld double [Drineted, 1988]

Definition: A Drinfeld double is a $2 D$-dimensional Lie group \mathcal{D}, whose Lie-algebra d

1. has an ad-invariant bilinear for $\langle\cdot, \cdot\rangle$ with signature (D, D)
2. admits the decomposition into two maximal isotropic subalgebras \mathfrak{g} and $\tilde{\mathfrak{g}}$

Drinfeld double [Drineted, 1988]

Definition: A Drinfeld double is a $2 D$-dimensional Lie group \mathcal{D}, whose Lie-algebra o

1. has an ad-invariant bilinear for $\langle\cdot, \cdot\rangle$ with signature (D, D)
2. admits the decomposition into two maximal isotropic subalgebras \mathfrak{g} and $\tilde{\mathfrak{g}}$

- $\left(\begin{array}{ll}t^{a} & t_{a}\end{array}\right)=t_{A} \in \mathfrak{d}, \quad t_{a} \in \mathfrak{g}$ and $t^{a} \in \tilde{\mathfrak{g}}$
- $\left\langle t_{A}, t_{B}\right\rangle=\eta_{A B}=\left(\begin{array}{cc}0 & \delta_{b}^{a} \\ \delta_{a}^{b} & 0\end{array}\right)$

Drinfeld double [Drineted, 1988]

Definition: A Drinfeld double is a $2 D$-dimensional Lie group \mathcal{D}, whose Lie-algebra d

1. has an ad-invariant bilinear for $\langle\cdot, \cdot\rangle$ with signature (D, D)
2. admits the decomposition into two maximal isotropic subalgebras \mathfrak{g} and $\tilde{\mathfrak{g}}$

- $\left(\begin{array}{ll}t^{a} & t_{a}\end{array}\right)=t_{A} \in \mathfrak{d}, \quad t_{a} \in \mathfrak{g}$ and $t^{a} \in \tilde{\mathfrak{g}}$
- $\left\langle t_{A}, t_{B}\right\rangle=\eta_{A B}=\left(\begin{array}{cc}0 & \delta_{b}^{a} \\ \delta_{a}^{b} & 0\end{array}\right)$
- $\left[t_{A}, t_{B}\right]=F_{A B} c_{t_{C}}$ with non-vanishing commutators

$$
\begin{aligned}
{\left[t_{a}, t_{b}\right] } & =f_{a b}{ }^{c} t_{c} \\
{\left[t^{a}, t^{b}\right] } & =\tilde{f}^{a b}{ }_{c} t^{c}
\end{aligned}
$$

- ad-invariance of $\langle\cdot, \cdot\rangle$ implies $F_{A B C}=F_{[A B C]}$

Poisson-Lie T-duality: 1. Definition [Kkimcik and Severa, 1995]

- 2D σ-model on target space M with action

$$
S(E, M)=\int d z d \bar{z} E_{i j} \partial x^{i} \bar{\partial} x^{j}
$$

- $E_{i j}=g_{i j}+B_{i j}$ captures metric and two-from field on M
- inverse of $E_{i j}$ is denoted as $E^{i j}$

Poisson-Lie T-duality: 1. Definition [Kilmcik and Severa, 1995]

- 2D σ-model on target space M with action

$$
S(E, M)=\int d z d \bar{z} E_{i j} \partial x^{i} \bar{\partial} x^{j}
$$

- $E_{i j}=g_{i j}+B_{i j}$ captures metric and two-from field on M
- inverse of $E_{i j}$ is denoted as $E^{i j}$
- left invariant vector field $v_{\mathrm{a}}{ }^{i}$ on G is the inverse transposed of right invariant Maurer-Cartan form $t_{a} \nu^{a}{ }_{i} d x^{i}=d g g^{-1}$
- adjoint action of $g \in G$ on $t_{A} \in \mathfrak{d}: \mathrm{Ad}_{g} t_{A}=g t_{A} g^{-1}=M_{A}{ }^{B} t_{B}$
- analog for \tilde{G}

Poisson-Lie T-duality: 1. Definition [Kkimcik and Severa, 1995]

- 2D σ-model on target space M with action

$$
S(E, M)=\int d z d \bar{z} E_{i j} \partial x^{i} \bar{\partial} x^{j}
$$

- $E_{i j}=g_{i j}+B_{i j}$ captures metric and two-from field on M
- inverse of $E_{i j}$ is denoted as $E^{i j}$
- left invariant vector field $v_{a}{ }^{i}$ on G is the inverse transposed of right invariant Maurer-Cartan form $t_{a} v^{a}{ }_{i} d x^{i}=d g g^{-1}$
- adjoint action of $g \in G$ on $t_{A} \in \mathfrak{d}: \mathrm{Ad}_{g} t_{A}=g t_{A} g^{-1}=M_{A}{ }^{B} t_{B}$
- analog for \tilde{G}

Definition: $S(E, \mathcal{D} / \tilde{G})$ and $S(\tilde{E}, \mathcal{D} / G)$ are Poisson-Lie T-dual if

$$
\begin{aligned}
& E^{i j}=v_{c}{ }^{i} M_{a}{ }^{c}\left(M^{a e} M^{b}{ }_{e}+E_{0}^{a b}\right) M_{b}{ }^{d} v_{d}{ }^{j} \\
& \tilde{E}^{i j}=\tilde{v}^{c i} \tilde{M}^{a}{ }_{c}\left(\tilde{M}_{a e} \tilde{M}_{b}{ }^{e}+E_{0 a b}\right) \tilde{M}^{b}{ }_{d} \tilde{v}^{d j}
\end{aligned}
$$

holds, where $E_{0}^{a b}$ is constant and invertible with the inverse $E_{0 \text { ab }}$.

Poisson-Lie T-duality: 2. Properties

- captures $\left\{\begin{array}{lll}\text { abelian T-d. } & G \text { abelian } & \text { and } \tilde{G} \text { abelian } \\ \text { non-abelian T-d. } & G \text { non-abelian } & \text { and } \\ \text { [Ossa and Quevedo, 1993;Giveon and Rocek, 1994; Alvarez, Alvarez-Gaume, and Lozano, 1994;...] }\end{array}\right.$

Poisson-Lie T-duality: 2. Properties

- captures $\left\{\begin{array}{lll}\text { abelian T-d. } & G \text { abelian } & \text { and } \\ \text { non-abelian T-d. } & G \text { non-abelian abelian } \\ \text { [Ossa and Quevedo, 1993;Giveon and Rocek, 1994; Avarez, Avarez-Gaume, and Lozano, 1994;...] }\end{array}\right.$
- dual σ-models related by canonical transformation
[Klimcik and Severa, 1995;Klimcik and Severa, 1996;Sfetsos, 1998]
\rightarrow equivalent at the classical level
- preserves conformal invariance at one-loop
[Alekseev, Klimcik, and Tseytlin, 1996;Sfetsos, 1998;.. . ;Jurco and Vysoky, 2017]

Poisson-Lie T-duality: 2. Properties

- dual σ-models related by canonical transformation
[Klimcik and Severa, 1995;Klimcik and Severa, 1996;Sfetsos, 1998]
\rightarrow equivalent at the classical level
- preserves conformal invariance at one-loop
[Alekseev, Klimcik, and Tseytlin, 1996;Sfetsos, 1998;. . ; Jurco and Vysoky, 2017]
- dilaton transformation [Jurco and Vysok, 2017]

$$
\left.\begin{aligned}
& \left.\phi=-\frac{1}{2} \log \right\rvert\, \operatorname{det}\left(1+\tilde{g}_{0}^{-1}\left(\tilde{B}_{0}+\Pi\right)\right) \\
& \left.\tilde{\phi}=-\frac{1}{2} \log \right\rvert\, \operatorname{det}\left(1+g_{0}^{-1}\left(B_{0}+\tilde{\Pi}\right)\right)
\end{aligned} \right\rvert\, \quad \text { details later }
$$

2D σ-model perspective
SUGRA perspective

Additional structure on the Drinfeld double

[Blumenhagen, Hassler, and Lüst, 2015, Blumenhagen, Bosque, Hassler, and Lüst, 2015]

- right invariant vector E_{A} ' field on \mathcal{D} is the inverse transposed of left invariant Maurer-Cartan form $t_{A} E^{A}, d X^{\prime}=g^{-1} d g$

Additional structure on the Drinfeld double

[Blumenhagen, Hassler, and Lüst, 2015, Blumenhagen, Bosque, Hassler, and Lüst, 2015]

- right invariant vector E_{A} ' field on \mathcal{D} is the inverse transposed of left invariant Maurer-Cartan form $t_{A} E^{A}, d X^{\prime}=g^{-1} d g$
- two η-compatible, covariant derivatives ${ }^{1}$

1. flat derivative

$$
D_{A} V^{B}=E_{A}^{\prime} \partial_{l} V^{B}
$$

2. convenient derivative

$$
\nabla_{A} V^{B}=D_{A} V^{B}+\frac{1}{3} F_{A C^{B}} V^{C}-w F_{A} \quad F_{A}=D_{A} \log \left|\operatorname{det}\left(E^{B}\right)\right|
$$

${ }^{1}$ definitions here just for quantities with flat indices

Additional structure on the Drinfeld double

[Blumenhagen, Hassler, and Lüst, 2015, Blumenhagen, Bosque, Hassler, and Lüst, 2015]

- right invariant vector $E_{A}{ }^{\prime}$ field on \mathcal{D} is the inverse transposed of left invariant Maurer-Cartan form $t_{A} E^{A}, d X^{\prime}=g^{-1} d g$
- two η-compatible, covariant derivatives ${ }^{1}$

1. flat derivative

$$
D_{A} V^{B}=E_{A}^{\prime} \partial_{l} V^{B}
$$

2. convenient derivative

$$
\nabla_{A} V^{B}=D_{A} V^{B}+\frac{1}{3} F_{A C^{B}} V^{C}-w F_{A} \quad F_{A}=D_{A} \log \left|\operatorname{det}\left(E^{B}\right)\right|
$$

- generalized metric $\mathcal{H}_{A B}(w=0)$

$$
\mathcal{H}_{A B}=\mathcal{H}_{(A B)}, \quad \mathcal{H}_{A C} \eta^{C D} H_{D B}=\eta_{A B}
$$

- generalized dilaton d with $e^{-2 d}$ scalar density of weight $w=1$
${ }^{1}$ definitions here just for quantities with flat indices

Additional structure on the Drinfeld double

[Blumenhagen, Hassler, and Lüst, 2015, Blumenhagen, Bosque, Hassler, and Lüst, 2015]

- right invariant vector $E_{A}{ }^{\prime}$ field on \mathcal{D} is the inverse transposed of left invariant Maurer-Cartan form $t_{A} E^{A}, d X^{\prime}=g^{-1} d g$
- two η-compatible, covariant derivatives ${ }^{1}$

1. flat derivative

$$
D_{A} V^{B}=E_{A}^{\prime} \partial_{l} V^{B}
$$

2. convenient derivative

$$
\nabla_{A} V^{B}=D_{A} V^{B}+\frac{1}{3} F_{A C^{B}} V^{C}-w F_{A} \quad F_{A}=D_{A} \log \left|\operatorname{det}\left(E^{B}\right)\right|
$$

- generalized metric $\mathcal{H}_{A B}(w=0)$

$$
\mathcal{H}_{A B}=\mathcal{H}_{(A B)}, \quad \mathcal{H}_{A C} \eta^{C D} H_{D B}=\eta_{A B}
$$

- generalized dilaton d with $e^{-2 d}$ scalar density of weight $w=1$
- triple $\left(\mathcal{D}, \mathcal{H}_{A B}, d\right)$ captures the doubled space of DFT
${ }^{1}$ definitions here just for quantities with flat indices

Double Field Theory for $\left(\mathcal{D}, \mathcal{H}_{A B}, d\right)$ [Blumenhagen, Bosque, Hassler, and Lüst, 2015]

see also [Vaisman, 2012; Hull and Reid-Edwards, 2009;Geissbuhler, Marques, Nunez, and Penas, 2013; Cederwall, 2014; ...]
$-\operatorname{action}\left(\nabla_{A} d=-\frac{1}{2} e^{2 d} \nabla_{A} e^{-2 d}\right)$

$$
\begin{aligned}
S_{\mathrm{NS}}= & \int_{\mathcal{D}} d^{2 D} X e^{-2 d}\left(\frac{1}{8} \mathcal{H}^{C D} \nabla_{C} \mathcal{H}_{A B} \nabla_{D} \mathcal{H}^{A B}-\frac{1}{2} \mathcal{H}^{A B} \nabla_{B} \mathcal{H}^{C D} \nabla_{D} \mathcal{H}_{A C}\right. \\
& \left.-2 \nabla_{A} d \nabla_{B} \mathcal{H}^{A B}+4 \mathcal{H}^{A B} \nabla_{A} d \nabla_{B} d+\frac{1}{6} F_{A C D} F_{B}^{C D} \mathcal{H}^{A B}\right)
\end{aligned}
$$

Double Field Theory for $\left(\mathcal{D}, \mathcal{H}_{A B}, d\right)$ [Blumenhagen, Bosque, Hassler, and Lüst, 2015]

see also [Vaisman, 2012; Hull and Reid-Edwards, 2009;Geissbuhler, Marques, Nunez, and Penas, 2013; Cederwall, 2014; ...]
$-\operatorname{action}\left(\nabla_{A} d=-\frac{1}{2} e^{2 d} \nabla_{A} e^{-2 d}\right)$

$$
\begin{aligned}
S_{\mathrm{NS}}= & \int_{\mathcal{D}} d^{2 D} X e^{-2 d}\left(\frac{1}{8} \mathcal{H}^{C D} \nabla_{C} \mathcal{H}_{A B} \nabla_{D} \mathcal{H}^{A B}-\frac{1}{2} \mathcal{H}^{A B} \nabla_{B} \mathcal{H}^{C D} \nabla_{D} \mathcal{H}_{A C}\right. \\
& \left.-2 \nabla_{A} d \nabla_{B} \mathcal{H}^{A B}+4 \mathcal{H}^{A B} \nabla_{A} d \nabla_{B} d+\frac{1}{6} F_{A C D} F_{B}{ }^{C D} \mathcal{H}^{A B}\right)
\end{aligned}
$$

- 2D-diffeomorphisms
$L_{\xi} V^{A}=\xi^{B} D_{B} V^{A}+w D_{B} \xi^{B} V^{A}$
global $\mathrm{O}(D, D)$ transformations
$V^{A} \rightarrow T^{A}{ }_{B} V^{B} \quad$ with $\quad T^{A}{ }_{C} T^{B}{ }_{D} \eta^{C D}=\eta^{A B}$

Double Field Theory for $\left(\mathcal{D}, \mathcal{H}_{A B}, d\right)$ [Blumenhagen, Bosque, Hassler, and Lüst, 2015]

see also [Vaisman, 2012; Hull and Reid-Edwards, 2009;Geissbuhler, Marques, Nunez, and Penas, 2013; Cederwall, 2014; ...]
$-\operatorname{action}\left(\nabla_{A} d=-\frac{1}{2} e^{2 d} \nabla_{A} e^{-2 d}\right)$

$$
\begin{aligned}
S_{\mathrm{NS}}= & \int_{\mathcal{D}} d^{2 D} X e^{-2 d}\left(\frac{1}{8} \mathcal{H}^{C D} \nabla_{C} \mathcal{H}_{A B} \nabla_{D} \mathcal{H}^{A B}-\frac{1}{2} \mathcal{H}^{A B} \nabla_{B} \mathcal{H}^{C D} \nabla_{D} \mathcal{H}_{A C}\right. \\
& \left.-2 \nabla_{A} d \nabla_{B} \mathcal{H}^{A B}+4 \mathcal{H}^{A B} \nabla_{A} d \nabla_{B} d+\frac{1}{6} F_{A C D} F_{B}{ }^{C D} \mathcal{H}^{A B}\right)
\end{aligned}
$$

- 2D-diffeomorphisms

$$
L_{\xi} V^{A}=\xi^{B} D_{B} V^{A}+w D_{B} \xi^{B} V^{A}
$$

global $\mathrm{O}(D, D)$ transformations
$V^{A} \rightarrow T^{A}{ }_{B} V^{B} \quad$ with $\quad T^{A}{ }_{C} T^{B}{ }_{D} \eta^{C D}=\eta^{A B}$

- generalized diffeomorphisms
$\mathcal{L}_{\xi} V^{A}=\xi^{B} \nabla_{B} V^{A}+\left(\nabla^{A} \xi_{B}-\nabla_{B} \xi^{A}\right) V^{B}+w \nabla_{B} \xi^{B} V^{A}$
- section condition (SC)
$\eta^{A B} D_{A} \cdot D_{B}=0$

Symmetries of the action

- S_{NS} invariant for $X^{\prime} \rightarrow X^{\prime}+\xi^{A} E_{A}^{\prime}$ and

$$
\begin{array}{lll}
\text { 1. } \mathcal{H}^{A B} \rightarrow \mathcal{H}^{A B}+\mathcal{L}_{\xi} \mathcal{H}^{A B} & \text { and } & e^{-2 d} \rightarrow e^{-2 d}+\mathcal{L}_{\xi} e^{-2 d} \\
\text { 2. } \mathcal{H}^{A B} \rightarrow \mathcal{H}^{A B}+L_{\xi} \mathcal{H}^{A B} & \text { and } & e^{-2 d} \rightarrow e^{-2 d}+L_{\xi} e^{-2 d}
\end{array}
$$

Symmetries of the action

- S_{NS} invariant for $X^{\prime} \rightarrow X^{\prime}+\xi^{A} E_{A}^{\prime}$ and

$$
\begin{array}{lll}
\text { 1. } \mathcal{H}^{A B} \rightarrow \mathcal{H}^{A B}+\mathcal{L}_{\xi} \mathcal{H}^{A B} & \text { and } & e^{-2 d} \rightarrow e^{-2 d}+\mathcal{L}_{\xi} e^{-2 d} \\
\text { 2. } \mathcal{H}^{A B} \rightarrow \mathcal{H}^{A B}+L_{\xi} \mathcal{H}^{A B} & \text { and } & e^{-2 d} \rightarrow e^{-2 d}+L_{\xi} e^{-2 d}
\end{array}
$$

object	gen.-diffeomorphisms	2D-diffeomorphisms	global $\mathrm{O}(D, D)$
$\mathcal{H}_{A B}$	tensor	scalar	tensor
$\nabla_{A} d$	not covariant	scalar	1-form
$e^{-2 d}$	scalar density ($w=1$)	scalar density ($w=1$)	invariant
$\eta_{A B}$	invariant	invariant	invariant
$F_{A B}{ }^{C}$	invariant	invariant	tensor
$E_{A}{ }^{\prime}$	invariant	vector	1-form
$S_{\text {NS }}$	invariant	invariant	invariant
SC	invariant	invariant	invariant
D_{A}	not covariant	covariant	covariant
∇_{A}	not covariant	covariant	covariant
Motivation oo	Poisson-Lie T-duality 000	manifest Double Field Theory $00 \bullet 000000$	Summary ∞

Poisson-Lie T-duality: 1. Solve SC ${ }_{[H a s s l e r, ~ 2016] ~}$

- fix D physical coordinates x^{i} from $X^{\prime}=\left(\begin{array}{ll}x^{i} & x^{\tilde{i}}\end{array}\right)$ on \mathcal{D}
such that $\eta^{I J}=E_{A}{ }^{\prime} \eta^{A B} E_{B}^{J}=\left(\begin{array}{cc}0 & \ldots \\ \ldots & \ldots\end{array}\right) \rightarrow$ SC is solved
- fields and gauge parameter depend just on x^{i}

Poisson-Lie T-duality: 1. Solve SC [Hassler, 2016]

- fix D physical coordinates x^{i} from $X^{\prime}=\left(\begin{array}{ll}x^{i} & x^{\tilde{i}}\end{array}\right)$ on \mathcal{D} such that $\eta^{I J}=E_{A}{ }^{\prime} \eta^{A B} E_{B}^{J}=\left(\begin{array}{cc}0 & \ldots \\ \ldots & \ldots\end{array}\right) \rightarrow$ SC is solved
- fields and gauge parameter depend just on x^{i}
- only two SC solutions, relate them by symmetries of DFT

Poisson-Lie T-duality: 1. Solve SC [Hassler, 2016]

- fix D physical coordinates x^{i} from $X^{I}=\left(\begin{array}{ll}x^{i} & x^{\tilde{i}}\end{array}\right)$ on \mathcal{D}
such that $\eta^{I J}=E_{A}{ }^{\prime} \eta^{A B} E_{B}^{J}=\left(\begin{array}{cc}0 & \ldots \\ \ldots & \ldots\end{array}\right) \rightarrow$ SC is solved
- fields and gauge parameter depend just on x^{i}
- only two SC solutions, relate them by symmetries of DFT

$$
d\left(X^{\prime \prime}\right)=\tilde{g}\left(x^{\prime i}\right) g\left(x^{\prime i}\right) \quad t^{A}=\left(t_{a} t^{a}\right)
$$

Poisson-Lie T-duality: 1. Solve SC ${ }_{[\text {Hasser, 2016] }}$

- fix D physical coordinates x^{i} from $X^{\prime}=\left(\begin{array}{ll}x^{i} & x^{\tilde{i}}\end{array}\right)$ on \mathcal{D} such that $\eta^{\prime J}=E_{A}^{\prime} \eta^{A B} E_{B}^{J}=\left(\begin{array}{cc}0 & \ldots \\ \ldots & \ldots\end{array}\right) \rightarrow S C$ is solved
- fields and gauge parameter depend just on x^{i}
- only two SC solutions, relate them by symmetries of DFT

Poisson-Lie T-duality: 2. As manifest symmetry of DFT

- same structure as in the original paper [Klimcik and Severa, 1995]
- duality target spaces arise as different solutions of the SC

Poisson-Lie T-duality: 2. As manifest symmetry of DFT

- same structure as in the original paper [Klimcik and Severa, 1995]
- duality target spaces arise as different solutions of the SC

Poisson-Lie T-duality:

- 2D-diffeomorphisms $X^{\prime} \rightarrow X^{\prime \prime}\left(X^{1}, \ldots X^{2 D}\right)$ with $d\left(X^{\prime}\right)=d\left(X^{\prime \prime}\right)$
- global $O(D, D)$ transformation $t_{A} \rightarrow \eta^{A B} t_{B}$

manifest symmtries of DFT

Poisson-Lie T-duality: 2. As manifest symmetry of DFT

- same structure as in the original paper [Klimcik and Severa, 1995]
- duality target spaces arise as different solutions of the SC

Poisson-Lie T-duality:

- 2D-diffeomorphisms $X^{\prime} \rightarrow X^{\prime \prime}\left(X^{1}, \ldots X^{2 D}\right)$ with $d\left(X^{\prime}\right)=d\left(X^{\prime \prime}\right)$
- global $O(D, D)$ transformation $t_{A} \rightarrow \eta^{A B} t_{B}$

manifest symmtries of DFT

- for abelian T-duality $X^{\prime} \rightarrow X^{\prime \prime}=X^{\prime}$
\rightarrow no 2D-diffeomorphisms needed, only global $\mathrm{O}(D, D)$ transformation

Poisson-Lie T-duality: 2. As manifest symmetry of DFT

- same structure as in the original paper [Klimcik and Severa, 1995]
- duality target spaces arise as different solutions of the SC

Poisson-Lie T-duality:

- 2D-diffeomorphisms $X^{\prime} \rightarrow X^{\prime \prime}\left(X^{1}, \ldots X^{2 D}\right)$ with $d\left(X^{\prime}\right)=d\left(X^{\prime \prime}\right)$
- global $O(D, D)$ transformation $t_{A} \rightarrow \eta^{A B} t_{B}$ manifest symmtries of DFT
- for abelian T-duality $X^{\prime} \rightarrow X^{\prime \prime}=X^{\prime}$
\rightarrow no 2D-diffeomorphisms needed, only global $\mathrm{O}(D, D)$ transformation

Poisson-Lie T-duality is a manifest symmetry of DFT

Equivalence to supergravity: 1. Generalized parallelizable spaces

[Lee, Strickland-Constable, and Waldram, 2014]

- generalized tangent space element $V^{\hat{l}}=\left(\begin{array}{ll}V^{i} & V_{i}\end{array}\right)$
- generalized Lie derivative

$$
\widehat{\mathcal{L}}_{\xi} V^{\widehat{\jmath}}=\xi^{\widehat{\jmath}} \partial_{\widehat{\jmath}} V^{\widehat{l}}+\left(\partial^{\widehat{\imath}} \xi_{\widehat{\jmath}}-\partial_{\widehat{\jmath}} \xi^{\widehat{l}}\right) V^{\widehat{\jmath}} \quad \text { with } \quad \partial_{\widehat{\jmath}}=\left(\begin{array}{ll}
0 & \partial_{i}
\end{array}\right)
$$

Equivalence to supergravity: 1. Generalized parallelizable spaces

[Lee, Strickland-Constable, and Waldram, 2014]

- generalized tangent space element $V^{\top}=\left(\begin{array}{ll}V^{i} & V_{i}\end{array}\right)$
- generalized Lie derivative

$$
\widehat{\mathcal{L}}_{\xi} V^{\widehat{\jmath}}=\xi^{\widehat{\jmath}} \partial_{\jmath} V^{\widehat{l}}+\left(\partial^{\widehat{\jmath}} \xi_{\widehat{\jmath}}-\partial_{\jmath} \xi^{\hat{l}}\right) V^{\hat{\jmath}} \quad \text { with } \quad \partial_{\widehat{\jmath}}=\left(\begin{array}{ll}
0 & \partial_{i}
\end{array}\right)
$$

Definition: A manifold M which admits a globally defined generalized frame field $\widehat{E}_{A}{ }^{\top}\left(x^{i}\right)$ satisfying

1. $\widehat{\mathcal{L}}_{\widehat{E}_{A}} \widehat{E}_{B}{ }^{\hat{\imath}}=F_{A B} C \widehat{E}_{C}{ }^{\prime}$
where $F_{A B}{ }^{C}$ are the structure constants of a Lie algebra \mathfrak{h}
2. $\widehat{E}_{A}{ }^{\hat{}} \eta^{A B} \widehat{E}_{B}^{\hat{\jmath}}=\eta^{\hat{\imath}}=\left(\begin{array}{cc}0 & \delta_{i}^{j} \\ \delta_{j}^{i} & 0\end{array}\right)$
is a generalized parallelizable space $\left(M, \mathfrak{h}, \widehat{E}_{A}{ }^{l}\right)$.

Equivalence to supergravity: 2. Generalized metric and dilaton

[Klimcik and Severa, 1995; Hull and Reid-Edwards, 2009; du Bosque, Hassler, Lüst, 2017]

- Drinfeld double $\mathcal{D} \rightarrow$ two generalized parallelizable spaces:

$$
\left(D / \tilde{G}, \mathfrak{d}, \widehat{E}_{A}{ }^{\hat{I}}\right)
$$

$$
\widehat{E}_{A}{ }^{\hat{l}}=M_{A}^{B}\left(\begin{array}{cc}
v^{b} & 0 \\
0 & v_{b}{ }^{i}
\end{array}\right) B^{\hat{l}}
$$

$\left(D / G, \mathfrak{d}, \widetilde{E}_{A}{ }^{\hat{l}}\right)$
$\widetilde{\widehat{E}}_{A} \hat{\imath}=\tilde{M}_{A B}\left(\begin{array}{cc}\tilde{v}_{b i} & 0 \\ 0 & \tilde{v}^{b i}\end{array}\right) \hat{B I}$

Equivalence to supergravity: 2. Generalized metric and dilaton

[Klimcik and Severa, 1995; Hull and Reid-Edwards, 2009; du Bosque, Hassler, Lüst, 2017]

- Drinfeld double $\mathcal{D} \rightarrow$ two generalized parallelizable spaces:
$\left(D / \tilde{G}, \mathfrak{d}, \widehat{E}_{A}{ }^{\prime}\right)$
$\widehat{E}_{A}{ }^{\hat{I}}=M_{A}{ }^{B}\left(\begin{array}{cc}v^{b}{ }_{i} & 0 \\ 0 & v_{b}{ }^{j}\end{array}\right) B^{\hat{}}$
$\left(D / G, \mathfrak{d}, \widetilde{E}_{A}{ }^{\hat{l}}\right)$
$\widetilde{\widehat{E}}_{A} \hat{\imath}=\tilde{M}_{A B}\left(\begin{array}{cc}\tilde{v}_{b i} & 0 \\ 0 & \tilde{v}^{b i}\end{array}\right) \hat{B I}$
- express $\mathcal{H}^{A B}$ in terms of the generalized $\widehat{\mathcal{H}}^{i \hat{\jmath}}$ on $T D / \tilde{G} \oplus T^{*} D / \tilde{G}$ $\mathcal{H}^{A B}=\widehat{E}^{A} \widehat{\mathcal{H}}^{\hat{\jmath} \hat{E}} \widehat{E}^{B} \quad$ with $\quad \widehat{\mathcal{H}}^{\hat{\jmath} \hat{\jmath}}=\left(\begin{array}{cc}g_{i j}-B_{i k} g^{k l} B_{l k} & -B_{i k} g^{k l} \\ g^{i k} B_{k j} & g^{i j}\end{array}\right)$
- express d in terms of the standard generalized dilaton \widehat{d}
$d=\widehat{d}-\frac{1}{2} \log \left|\operatorname{det} \tilde{v}_{a i}\right|$
$\widehat{d}=\phi-1 / 4 \log \left|\operatorname{det} g_{i j}\right|$

Equivalence to supergravity: 2. Generalized metric and dilaton

[Klimcik and Severa, 1995; Hull and Reid-Edwards, 2009; du Bosque, Hassler, Lüst, 2017]

- Drinfeld double $\mathcal{D} \rightarrow$ two generalized parallelizable spaces:
$\left(D / \tilde{G}, \mathfrak{d}, \widehat{E}_{A}{ }^{\prime}\right)$
$\widehat{E}_{A}{ }^{\hat{I}}=M_{A}{ }^{B}\left(\begin{array}{cc}v^{b}{ }_{i} & 0 \\ 0 & v_{b}{ }^{j}\end{array}\right) B^{\hat{}}$
$\left(D / G, \mathfrak{d}, \widetilde{E}_{A}{ }^{\hat{l}}\right)$
$\widetilde{\widehat{E}}_{A} \hat{I}=\tilde{M}_{A B}\left(\begin{array}{cc}\tilde{v}_{b i} & 0 \\ 0 & \tilde{v}^{b i}\end{array}\right) \hat{B I}$
- express $\mathcal{H}^{A B}$ in terms of the generalized $\widehat{\mathcal{H}}^{i \hat{\jmath}}$ on $T D / \tilde{G} \oplus T^{*} D / \tilde{G}$ $\mathcal{H}^{A B}=\widehat{E}^{A} \widehat{\mathcal{H}}^{\hat{l} \hat{\jmath}} \widehat{E}^{B} \quad$ with $\quad \widehat{\mathcal{H}}^{\hat{\jmath} \hat{\jmath}}=\left(\begin{array}{cc}g_{i j}-B_{i k} g^{k l} B_{l k} & -B_{i k} g^{k l} \\ g^{i k} B_{k j} & g^{i j}\end{array}\right)$
- express d in terms of the standard generalized dilaton \widehat{d}
$d=\widehat{d}-\frac{1}{2} \log \left|\operatorname{det} \tilde{v}_{a i}\right|$
$\widehat{d}=\phi-1 / 4 \log \left|\operatorname{det} g_{i j}\right|$
- plug into the DFT action S_{NS}

Equivalence to supergravity: 3. IIA/B bosonic sector action

- if G and \tilde{G} are unimodular

$$
\begin{aligned}
S_{\mathrm{NS}}=V_{\tilde{G}} \int d^{D} x e^{-2 \widehat{d}(} & \frac{1}{8} \hat{\mathcal{H}}^{\hat{\kappa} \hat{L}} \partial_{\hat{K}} \widehat{\mathcal{H}}_{\hat{\mathcal{J}}} \partial_{\hat{L}} \hat{\mathcal{H}}^{\hat{\jmath}}-2 \partial_{\hat{\jmath}} \widehat{d} \partial_{\hat{\mathcal{H}}} \hat{\mathcal{H}}^{\hat{\jmath}} \\
& \left.-\frac{1}{2} \hat{\mathcal{H}}^{\hat{\jmath}} \partial_{\hat{\mathcal{H}}} \widehat{\mathcal{H}}^{\hat{\kappa}} \partial_{\hat{L}} \hat{\mathcal{H}}_{\hat{\mathcal{K}}} \hat{K}+4 \hat{\mathcal{H}}^{\hat{\jmath}} \partial_{\hat{\jmath}} \hat{d} \partial_{\hat{\jmath}} \widehat{d}\right)
\end{aligned}
$$

- $V_{\tilde{G}}=\int_{\tilde{G}} d \tilde{x}^{D} \operatorname{det} \tilde{V}_{a i}$ volume of group \tilde{G}

Equivalence to supergravity: 3. IIA/B bosonic sector action

- if G and \tilde{G} are unimodular

$$
\begin{aligned}
S_{\mathrm{NS}}=V_{\tilde{G}} \int d^{D} x e^{-2 \widehat{d}}(& \frac{1}{8} \widehat{\mathcal{H}}^{\hat{\kappa}} \partial_{\partial_{\hat{K}}} \widehat{\mathcal{H}}_{\hat{\mathcal{J}}} \partial_{\hat{L}} \hat{\mathcal{H}}^{\hat{\jmath}}-2 \partial_{\hat{\jmath}} \widehat{d} \partial_{\hat{\jmath}} \hat{\mathcal{H}}^{\hat{\jmath}} \\
& \left.-\frac{1}{2} \hat{\mathcal{H}}^{\hat{\jmath}} \partial_{\hat{\mathcal{H}}} \widehat{\mathcal{H}}^{\kappa} \partial_{\hat{L}} \hat{\mathcal{H}}_{\hat{\mathcal{K}}}+4 \hat{\mathcal{H}}^{\hat{\jmath}} \partial_{\hat{\jmath}} \hat{d} \partial_{\hat{\jmath}} \widehat{d}\right)
\end{aligned}
$$

- $V_{\tilde{G}}=\int_{\tilde{G}} d \tilde{x}^{D} \operatorname{det} \tilde{V}_{a i}$ volume of group \tilde{G}
- equivalent to IIA/B NS/NS sector action
[Hohm, Hull, and Zwiebach, 2010; Hohm, Hull, and Zwiebach, 2010]

$$
S_{\mathrm{NS}}=V_{\tilde{G}} \int \mathrm{~d}^{D} x \sqrt{\operatorname{det}\left(g_{i j}\right)} e^{-2 \phi}\left(\mathcal{R}+4 \partial_{i} \phi \partial^{i} \phi-\frac{1}{12} H_{i j k} H^{i j k}\right)
$$

- holds for all $\mathcal{H}_{A B}\left(x^{i}\right) / \hat{\mathcal{H}}^{i \hat{J}}\left(x^{i}\right)$
- only D-diffeomorphisms and B-field gauge trans. as symmetries

Equivalence to supergravity: 3. IIA/B bosonic sector action

- if G and \tilde{G} are unimodular

$$
\begin{aligned}
S_{\mathrm{NS}}=V_{\tilde{G}} \int d^{D} x e^{-2 \hat{d}}(& \frac{1}{8} \widehat{\mathcal{H}}^{\hat{\kappa} \hat{L}} \partial_{\hat{K}} \widehat{\mathcal{H}}_{\hat{\mathcal{J}}} \partial_{\hat{L}} \hat{\mathcal{H}}^{\hat{\jmath}}-2 \partial_{\hat{\jmath}} \widehat{d} \partial_{\hat{\jmath}} \hat{\mathcal{H}}^{\hat{\jmath}} \\
& \left.-\frac{1}{2} \hat{\mathcal{H}}^{\hat{\jmath}} \partial_{\hat{\mathcal{H}}} \widehat{\mathcal{H}}^{\kappa} \partial_{\hat{L}} \hat{\mathcal{H}}_{\hat{\mathcal{K}}}+4 \hat{\mathcal{H}}^{\hat{\jmath}} \partial_{\hat{\jmath}} \hat{d} \partial_{\hat{\jmath}} \widehat{d}\right)
\end{aligned}
$$

- $V_{\tilde{G}}=\int_{\tilde{G}} d \tilde{x}^{D} \operatorname{det} \tilde{V}_{a i}$ volume of group \tilde{G}
- equivalent to IIA/B NS/NS sector action
[Hohm, Hull, and Zwiebach, 2010; Hohm, Hull, and Zwiebach, 2010]

$$
S_{\mathrm{NS}}=V_{\tilde{G}} \int \mathrm{~d}^{D} x \sqrt{\operatorname{det}\left(g_{i j}\right)} e^{-2 \phi}\left(\mathcal{R}+4 \partial_{i} \phi \partial^{i} \phi-\frac{1}{12} H_{i j k} H^{i j k}\right)
$$

- holds for all $\mathcal{H}_{A B}\left(x^{i}\right) / \hat{\mathcal{H}}^{i \hat{I}}\left(x^{i}\right)$
- only D-diffeomorphisms and B-field gauge trans. as symmetries
- similar story for R / R sector

Restrictions on $\mathcal{H}_{A B}$ and d to admit Poisson-Lie T-duality

- in general $\mathcal{H}_{A B}\left(x^{i}\right) \xrightarrow{\text { Poisson-Lie T-duality (2D-diff.) }} \mathcal{H}_{A B}\left(x^{\prime i}, x^{\prime i}\right)$
- $x^{\text {ii }}$ part not compatible with ansatz for SUGRA reduction \rightarrow avoid it

Restrictions on $\mathcal{H}_{A B}$ and d to admit Poisson-Lie T-duality

- in general $\mathcal{H}_{A B}\left(x^{i}\right) \xrightarrow{\text { Poisson-Lie T-duality (2D-diff.) }} \mathcal{H}_{A B}\left(x^{\prime \prime}, x^{\prime i}\right)$
- $x^{\prime i}$ part not compatible with ansatz for SUGRA reduction \rightarrow avoid it

A doubled space $\left(\mathcal{D}, \mathcal{H}_{A B}, d\right)$ admits Poisson-Lie T-dual (is PL symmetric) supergravity descriptions iff

1. $L_{\xi} \mathcal{H}_{A B}=0 \quad \forall \xi \quad \rightarrow \quad D_{A} \mathcal{H}_{A B}=0$
2. $L_{\xi} d=0 \quad \forall \xi \rightarrow\left(D_{A}-F_{A}\right) e^{-2 d}=0$

Application: Dilaton transformation

$-\left(D_{A}-F_{A}\right) e^{-2 d}=0 \rightarrow \partial_{I}(\underbrace{2 d+\log |\operatorname{det} v|+\log |\operatorname{det} \tilde{v}|}_{=2 \phi_{0}=\text { const. }})=0$

Application: Dilaton transformation

- $\left(D_{A}-F_{A}\right) e^{-2 d}=0 \rightarrow \partial_{l}(\underbrace{2 d+\log |\operatorname{det} v|+\log |\operatorname{det} \tilde{v}|}_{=2 \phi_{0}=\text { const. }})=0$
- $d=\phi-1 / 4 \log |\operatorname{det} g|-\frac{1}{2} \log |\operatorname{det} \tilde{v}|$
$\phi=\phi_{0}+\frac{1}{4} \log |\operatorname{det} g|-\frac{1}{2} \log |\operatorname{det} v|$

Application: Dilaton transformation

$$
-\left(D_{A}-F_{A}\right) e^{-2 d}=0 \rightarrow \partial_{l}(\underbrace{2 d+\log |\operatorname{det} v|+\log |\operatorname{det} \tilde{v}|}_{=2 \phi_{0}=\text { const. }})=0
$$

- $d=\phi-1 / 4 \log |\operatorname{det} g|-\frac{1}{2} \log |\operatorname{det} \tilde{v}|$
$\phi=\phi_{0}+\frac{1}{4} \log |\operatorname{det} g|-\frac{1}{2} \log |\operatorname{det} v|$
$\nabla g=v^{T} e^{T} e v \quad$ with $\quad\left\{\begin{aligned}\left(\tilde{B}_{0}+\tilde{g}_{0}\right)^{a b} & =E^{0 a b} \\ \Pi^{a b} & =M^{a c} M^{b}{ }_{c} \\ e^{-1} e^{-T} & =\tilde{g}_{0}-\left(\tilde{B}_{0}+\Pi\right) \tilde{g}_{0}^{-1}\left(\tilde{B}_{0}+\Pi\right) \\ \tilde{e}_{0}^{T} \tilde{e}_{0} & =\tilde{g}_{0} \\ e^{-T} & =\tilde{e}_{0}+\tilde{e}_{0}^{-T}\left(\tilde{B}_{0}+\Pi\right)\end{aligned}\right.$

Application: Dilaton transformation

$-\left(D_{A}-F_{A}\right) e^{-2 d}=0 \rightarrow \partial_{I}(\underbrace{2 d+\log |\operatorname{det} v|+\log |\operatorname{det} \tilde{v}|}_{=2 \phi_{0}=\text { const. }})=0$

- $d=\phi-1 / 4 \log |\operatorname{det} g|-\frac{1}{2} \log |\operatorname{det} \tilde{v}|$
$\phi=\phi_{0}+\frac{1}{4} \log |\operatorname{det} g|-\frac{1}{2} \log |\operatorname{det} v|$
$\nabla g=v^{T} e^{T} e v \quad$ with $\left\{\begin{aligned} e^{-1} e^{-T} & =\tilde{g}_{0}-\left(\tilde{B}_{0}+\Pi\right) \tilde{g}_{0}^{-1}\left(\tilde{B}_{0}+\Pi\right) \\ \tilde{e}_{0}^{T} \tilde{e}_{0} & =\tilde{g}_{0} \\ e^{-T} & =\tilde{e}_{0}+\tilde{e}_{0}^{-T}\left(\tilde{B}_{0}+\Pi\right)\end{aligned}\right.$
- $\left.\phi=\phi_{0}+\frac{1}{2} \log |\operatorname{det} e|=\phi_{0}-\frac{1}{2} \log \left|\operatorname{det} \tilde{e}_{0}\right|-\frac{1}{2} \log \right\rvert\, \operatorname{det}\left(1+\tilde{g}_{0}^{-1}\left(\tilde{B}_{0}+\Pi\right)\right)$
- reproduces [Jurco and Vysoky, 2017]

2. R/R sector transformation: $O(D, D)$ Majorana-Weyl spinors on \mathcal{D}

[Hohm, Kwak, and Zwiebach, 2011,Hassler, 2016]

- Γ-matrices: $\left\{\Gamma_{A}, \Gamma_{B}\right\}=2 \eta_{A B}$
- chirality $\Gamma_{2 D+1}$ with $\left\{\Gamma_{2 D+1}, \Gamma_{A}\right\}=0$
- charge conjugation C with $C \Gamma_{A} C^{-1}=\left(\Gamma_{A}\right)^{\dagger}$

2. R / R sector transformation: $\mathrm{O}(D, D)$ Majorana-Weyl spinors on \mathcal{D}

[Hohm, Kwak, and Zwiebach, 2011,Hassler, 2016]

- Γ-matrices: $\left\{\Gamma_{A}, \Gamma_{B}\right\}=2 \eta_{A B}$
- chirality $\Gamma_{2 D+1}$ with $\left\{\Gamma_{2 D+1}, \Gamma_{A}\right\}=0$
- charge conjugation C with $C \Gamma_{A} C^{-1}=\left(\Gamma_{A}\right)^{\dagger}$
- spinor can be expressed as $\chi=\sum_{p=0}^{D} \frac{1}{p!2^{p / 2}} C_{a_{1} \ldots a_{\rho}}^{(p)} \Gamma^{a_{1} \ldots a_{p}}|0\rangle$
- $\Gamma^{a}=$ creation op. and $\Gamma_{a}=$ annihilation op. $\left(\left\{\Gamma^{a}, \Gamma_{b}\right\}=2 \delta_{b}^{a}\right)$
- $\left(\Gamma^{a}\right)^{\dagger}=\Gamma_{a}$ and $|0\rangle=\operatorname{vacuum}\left(\Gamma_{a}|0\rangle=0\right)$
- χ is chiral/anti-chiral if all $C^{(p)}$ are even/odd

2. R/R sector transformation: $O(D, D)$ Majorana-Weyl spinors on \mathcal{D}

[Hohm, Kwak, and Zwiebach, 2011,Hassler, 2016]

- Γ-matrices: $\left\{\Gamma_{A}, \Gamma_{B}\right\}=2 \eta_{A B}$
- chirality $\Gamma_{2 D+1}$ with $\left\{\Gamma_{2 D+1}, \Gamma_{A}\right\}=0$
- charge conjugation C with $C \Gamma_{A} C^{-1}=\left(\Gamma_{A}\right)^{\dagger}$
- spinor can be expressed as $\chi=\sum_{p=0}^{D} \frac{1}{p!2^{p / 2}} C_{a_{1} \ldots a_{p}}^{(p)} \Gamma^{a_{1} \ldots a_{p}}|0\rangle$
- $\Gamma^{a}=$ creation op. and $\Gamma_{a}=$ annihilation op. $\left(\left\{\Gamma^{a}, \Gamma_{b}\right\}=2 \delta_{b}^{a}\right)$
- $\left(\Gamma^{a}\right)^{\dagger}=\Gamma_{a}$ and $|0\rangle=\operatorname{vacuum}\left(\Gamma_{a}|0\rangle=0\right)$
- χ is chiral/anti-chiral if all $C^{(p)}$ are even/odd
- $O(D, D)$ transformation in spinor representation

$$
\mathcal{S}_{\mathcal{O}} \Gamma_{A} \mathcal{S}_{\mathcal{O}}^{-1}=\Gamma_{B} \mathcal{O}^{B} A \quad \mathcal{O}^{T} \eta \mathcal{O}=\eta
$$

R/R sector of DFT on \mathcal{D} [Hassler, 2017]

- action $S_{\mathrm{RR}}=\frac{1}{4} \int d^{2 d} X(\not \nabla \chi)^{\dagger} S_{\mathcal{H}} \not \nabla \chi$
- covariant derivative $\not \nabla \chi=\left(\Gamma^{A} D_{A}-\frac{1}{12} \Gamma^{A B C} F_{A B C}-\frac{1}{2} \Gamma^{A} F_{A}\right) \chi$

R/R sector of DFT on \mathcal{D} [Hassler, 2017]

- action $S_{\mathrm{RR}}=\frac{1}{4} \int d^{2 d} X(\not \nabla \chi)^{\dagger} S_{\mathcal{H}} \not \nabla \chi$
- covariant derivative $\not \nabla \chi=\left(\Gamma^{A} D_{A}-\frac{1}{12} \Gamma^{A B C} F_{A B C}-\frac{1}{2} \Gamma^{A} F_{A}\right) \chi$
- $\nabla^{2}=0$ under SC
- χ is chiral (IIB) or anti-chiral (IIA)
- satisfies self duality condition

$$
G=-\mathcal{K} G \quad \text { with } \quad G=\not \subset \chi \quad \text { and } \quad \mathcal{K}=C^{-1} S_{\mathcal{H}}
$$

R/R sector of DFT on \mathcal{D} [Hassler, 2017]

- action $S_{\mathrm{RR}}=\frac{1}{4} \int d^{2 d} X(\not \nabla \chi)^{\dagger} S_{\mathcal{H}} \not \nabla \chi$
- covariant derivative $\not \nabla \chi=\left(\Gamma^{A} D_{A}-\frac{1}{12} \Gamma^{A B C} F_{A B C}-\frac{1}{2} \Gamma^{A} F_{A}\right) \chi$
- $\nabla^{2}=0$ under SC
- χ is chiral (IIB) or anti-chiral (IIA)
- satisfies self duality condition

$$
G=-\mathcal{K} G \quad \text { with } \quad G=\not \subset \chi \quad \text { and } \quad \mathcal{K}=C^{-1} S_{\mathcal{H}}
$$

- transport χ to the generalized tangent space:
$\widehat{\chi}=\left|\operatorname{det} \tilde{e}_{a i}\right|^{-1 / 2} S_{\widehat{E}} \chi \quad\left(t^{a} \tilde{e}_{a i}=\tilde{g}^{-1} d \tilde{g}\right)$
- same for covariant derivative

$$
\left|\operatorname{det} \tilde{e}_{a i}\right|^{-1 / 2} S_{\widehat{E}} \not \subset \chi=\not \partial \Gamma^{\hat{l}} \widehat{\chi} \quad S_{\widehat{E}} \Gamma^{A} S_{\widehat{E}}^{-1} \widehat{E}_{A}^{\hat{l}}=\widehat{\Gamma}^{\hat{l}} \quad \text { and } \quad \not \partial=\hat{\Gamma}^{i} \partial_{i}
$$

Equivalence to SUGRA [Hasster, 2017]

- introduce field strength $\widehat{F}=e^{\phi} S_{B} \not \partial \widehat{\chi}$ and $\mathbf{d}=e^{\phi} S_{B} \not \partial S_{B}^{-1} e^{-\phi}$
- DFT R/R field equations: $\not \subset(\mathcal{K} \not \subset) \chi=0$
- rewrite them as:
$\mathbf{d}(\star \mathbf{d} \widehat{F})=0 \quad \star=C^{-1} S_{g}^{-1}$
- plus Bianchi identity (BI)
$\mathbf{d} \widehat{F}=0$
- action on polyforms

\mathbf{d}	\leftrightarrow	$d+H \wedge-d \phi$
\star	\leftrightarrow	\star

- matches the R/R sector of SUGRA

Transformation rules

- again require PL symmetric for G : $\left(D_{A}-\frac{1}{2} F_{A}\right) G=0$
- on the gen. tangent space $\widehat{G}=|\operatorname{det} v|^{1 / 2} S_{\widehat{E}} G_{0}, G_{0}=$ constant
- same for dual space $\widetilde{\widehat{G}}=|\operatorname{det} \tilde{V}|^{1 / 2} S_{\widetilde{E}} G_{0}$

Transformation rules

- again require PL symmetric for G : $\left(D_{A}-\frac{1}{2} F_{A}\right) G=0$
- on the gen. tangent space $\widehat{G}=|\operatorname{det} v|^{1 / 2} S_{\widehat{E}} G_{0}, G_{0}=$ constant
- same for dual space $\widetilde{\widehat{G}}=|\operatorname{det} \tilde{v}|^{1 / 2} S_{\widetilde{E}} G_{0}$

R/R fields transform under Poisson-Lie T-duality as

$$
\widetilde{\widehat{G}}=\left|\operatorname{det} v^{-1} \tilde{v}\right|^{1 / 2} S_{\widetilde{\hat{E}} \hat{E}^{-1}} \widehat{G}
$$

Remarks:

- generalized frame fields \widehat{E} and $\widetilde{\widehat{E}}$ are know explicitly
- transform to differential forms with the O(D,D) spinor map
- first derivation of the R/R rules for PL TD

Summary

- DFT, Poisson-Lie T-duality and Drinfeld doubles fit together naturally
- interpretation of doubled space does not require winding modes anymore (phase space perspective instead)

Summary

- DFT, Poisson-Lie T-duality and Drinfeld doubles fit together naturally
- interpretation of doubled space does not require winding modes anymore (phase space perspective instead)
- various new directions for research in DFT
- translation of all the intriguing results in Poisson-Lie T-duality [Klimcik and Severa, 1996;Sfetsos, 1998; Klimcik, and Severa, 1996 (momentum \leftrightarrow winding); ...]
- Drinfeld doubles \rightarrow quantum groups \rightarrow rich mathematical structure
- new way to organized α^{\prime} corrections?
- new way to construct non-geometric backgrounds?
- branes in curved space [Klimcik, and Severa, 1996 (D-branes)]?

Summary

- DFT, Poisson-Lie T-duality and Drinfeld doubles fit together naturally
- interpretation of doubled space does not require winding modes anymore (phase space perspective instead)
- various new directions for research in DFT
- translation of all the intriguing results in Poisson-Lie T-duality [Klimcik and Severa, 1996;Sfetsos, 1998; Klimcik, and Severa, 1996 (momentum \leftrightarrow winding); . .]
- Drinfeld doubles \rightarrow quantum groups \rightarrow rich mathematical structure
- new way to organized α^{\prime} corrections?
- new way to construct non-geometric backgrounds?
- branes in curved space [Klimcik, and Severa, 1996 (D-branes)]?
- facilitates new applications
- integrable deformations of 2D σ-models
- solution generating technique
- explore underlying structure of AdS/CFT

Big picture

