Comparative Analysis between Blood Test and Breath Analysis using Sensors Array for Diabetic Patients

21 Jun 2019, 17:40
20m
Ferrara, Italy

Ferrara, Italy

Speaker

Prof. Hyung-Gi Byun (Kangwon National University, Korea)

Description

Acetone was one of the volatile organic compounds present in respiration, and acetone contained in the exhalation of diabetic patients was found to be a combustion metabolite of body fat. Degradation of acetyl-CoA due to the metabolism of fatty acids in diabetic patients increase the concentration of acetone in the blood. Acetone in the blood is excreted as urine or breath. It has been studied that acetone released from breathing is 0.3 to 0.9ppm for healthy people and 1.8ppm or more for diabetic patients. Therefore, a variety of studies have been conducted to monitor diabetes by measuring the acetone gas released from breathing. Methods for measuring the amount of acetone in the exhalation using a GC-MS, an electrochemical sensor, and a method using an array of gas sensors based on metal oxide types were studied.
In this paper, we have been developed an E-Nose system using a metal oxide sensors array and measured the expiration of the normal and diabetic groups to distinguish diabetic patients from normal subjects. And blood samples from those peoples were analyzed to compare the exhaled breath test results using an E-Nose system.
The E-nose system is composed of sensor array, data acquisition and processing, and clustering part. The sensor array shown as figure 1 was fabricated as one chip by depositing indium and tungsten with electron beam applying glancing angle deposition method at Korea Institute of Science Technology (KIST), Korea. A chamber was used to maintain the stable operating temperature of the sensor array and solid phase microextraction (SPME) fiber was used for the transfer of the measurement gas. Figure 2 is shown full system which has been used for experimental work.
The subjects were divided into controls and diabetes group, and 12 samples for controls and 11 samples for diabetics were selected. The collection and measurement of expiration and blood test were conducted in Dongsan Medical Center after approval of the Institute Review Board (IRB). The Clinical data for this study was summarized at Table 1.
The PCA results for these data are shown in Figure 3. As shown in Fig. 3, diabetic patients and controls are distinguished, but some samples were displayed in different areas. In the blood test, Blood Sugar Test (BST), glucose, and HbA1C were given more information for classification. Throughout the primary results for comparative analysis between blood test and breath analysis using a sensors array, we confirm the clustering between controls and diabetics is possible, but we need more specific blood test information to confirm accuracy of breath analysis.

Primary author

Prof. Hyung-Gi Byun (Kangwon National University, Korea)

Co-authors

Dr Joon-Bu Yu (Kangwon National University) Dr Chong-Yun Kang (KIST) Prof. Byong-Kuk Jang (Keimyung University Dongsan Medical Center) Dr Hae-Ryong Lee (ETRI)

Presentation materials

There are no materials yet.