Ultra-High Intensity Laser Research at BELLA

S. Steinke^{*}, J. H. Bin, A. M. Snijders, J. H. Mao, Q. Ji, K. Nakamura, A. Gonsalves, L. Geulig, S. S. Bulanov, W. P. Leemans, C. G. R. Geddes, C. Schroeder, T. Schenkel, E. A. Blakely, E. E. Esarey Lawrence Berkeley National Laboratory

> 4th European Advanced Accelerator Concepts Sep. 18, 2019

Supported by U.S. DOE under contract No. DE –AC002-05CH11231

*ssteinke@lbl.gov

Office of Science

- BELLA facility introduction
- Overview of LaserNetUS campaigns at BELLA PW
- Qubit synthesis under extreme conditions
- Platform for investigating radiobiological effects of laseraccelerated ions
- Upcoming BELLA PW upgrades

LBNL BELLA (BErkeley Lab Laser Accelerator) Center houses four main laser systems

1Hz-1PW class laser for High-Energy Physics applications

TAP BELLA

5Hz-100TW class laser for LPA-Thomson *Gamma rays source*

BELLA PW system^[1]:

High-quality, stable, well-characterized 1 Hz Petawatt laser

BELLA Center: HEP timeline of LPA Achievements in view of PR department

CONTINUOUS PROGRESS

Since its beginnings in the mid 1990s, BELLA has been in the forefront of LPA performance, and recently continued its string of energy records by producing 8-GeV electron beams.

In a separate achievement, BELLA has demonstrated "staging," the use of one LPA as the input to another, which will become key to achieving the highest energies.

2006: 40TW

0.15 0.175 0.3 0.4

0.03

86 MeV

0.5

0.8

2014: 300TW

2019: 1000TW & laser heater

4.2 GeV

2016: 40TW staging demo

Enabling technologies for ever-higher performance Shown below: The present 1 PW peak power in ultrashort (30-40 fs) pulses.

BELLA center is part of LaserNetUS (sponsored by DOE FES) and provides user access to PW and HTW facilities

Goal: Bring together the high-intensity laser science community and enable a broad range of frontier scientific research.

Experimental campaigns in 2019:

- 3 weeks at BELLA PW
- 4 weeks at HTT

Colorado State University

Advanced Beam Laboratory

Ohio State University

Contact:

Lawrence Berkeley National Laboratory

(BELLA) Center

Contact

Berkeley Lab Laser Accelerator

SLAC National Accelerator Laboratory

Contact:

Scarlet Laser Facility Contact

University of Nebraska - Lincoln

Extreme Light Laboratory Contact:

Matter in Extreme Conditions

Laboratory for Laser Energetics: OMEGA EP

Lawrence Livermore National Laboratory

Jupiter Laser Facility

Center for Ultrafast Optical Science: HERCULES

University of Texas - Austin

Center for High Energy Density Science: Texas Petawatt Laser

Ultra-thin, replenishable liquid crystal based plasma mirror to reduce emittance degradation – collaboration with OSU

- Plasma mirror separates electron beam from driver laser, protects APL from drive laser
- Can operate at 1Hz for ~20 hours
- nm scale thickness effectively eliminate emittance growth due to Coulomb scattering

E-beam transport & diagnostics projects at BELLA PW: integration of active plasma lens and replenishable foil

Technique from Weingartner et al. PRAB 2012

Compact multi-GeV high-resolution spectrometer

- Two 10 cm long, 0.9T dipoles in dogleg configuration provide dispersion
- <1% energy resolution for electrons up to 2 GeV when using APL
- Entire setup including target < 1m in length
- Scalable to 10 GeV

Petawatt experiments with statistical relevance – Laser sweeping under optimum condition leads flat-top acceleration field

Setup: Tape-drive target and MCP-based Thomson Parabola Spectrometer adapted for rep-rated experiments.

O ENERGY

Experiment: Laser pulse duration scan with 70 consecutive shots obtained at 0.5 Hz rate

WARP simulations: Higher electron temperature and increased number of hot electrons for the optimum pulse duration $(2w_0/c \sim 140 \text{ fs})$ due to sweeping effect.

S. Steinke et al., under review

Petawatt experiments with statistical relevance – Laser sweeping under optimum condition leads flat-top acceleration field

Setup: Tape-drive target and MCP-based Thomson Parabola Spectrometer adapted for rep-rated experiments.

BËNËRGY

Experiment: Laser pulse duration scan with 70 consecutive shots obtained at 0.5 Hz rate

WARP simulations: Higher electron temperature and increased number of hot electrons for the optimum pulse duration $(2w_0/c \sim 140 \text{ fs})$ due to sweeping effect.

S. Steinke et al., under review

Larger laser spot size results in achromatic divergence and unprecedented charge density proton beams

o adapted from

5um @ BELLA 2µm @ BELLA

0.8

1.0

Processed RCF data: in-house charge response calibration at NDCX-ii [J.H. Bin et al., RSI 90, 053301 (2019)] Nürnberg et al., RSI 80, 2009

- 10¹² protons > 1 MeV
- Strongly reduced divergence (5 times)

Charge density exceeds values from large single shot laser systems* Ideally suited for subsequent beam transport

S. Steinke et al., under review

0.2

0.4

Energy/Peak energy

0.6

70

10

0

0

* J. Schreiber et al., RSI 87, 071101 (2016).

Pulsed implantation of SiC with ion pulses from BELLA – towards formation of vacancy centers

Channeling - RBS, Ryan Thorpe, Rutgers

SIMS: Secondary Ion Mass Spectrometry

Ultra-high instantaneous dose-rate FLASH increases differential response between normal and tumor tissue

To create a platform for investigating radiobiological effects of laser-accelerated ion beams for the treatment of cancer. Long term impact is to establish Advanced Particle Therapy Research Facility (a technology test-bed facility) at LBNL.

WORKSHOP ON UNDERSTANDING HIGH-DOSE, ULTRA-DOSE-RATE AND SPATIAL FRACTION-ATED RADIOSURGERY

Co-Sponsored by National Cancer Institute and the Radiosurgery Society®

Tuesday, August 21, 2018

Experiment setup for determining capture efficiency and emittance measurement at PW power

- 1mm x 60mm APL placed 5mm behind source
- APL captures 25mrad
- Proton source imaging at 300-fold magnification at 1.5m with RCF and scintillators

FLASH-Radiobiological studies enabled by BELLA-PW-driven proton beams

2. Radiochromic film stacks for precise dose characterization (see J.H. Bin et al., RSI (2019):

1.2 MeV 3.2 MeV 4.4 MeV 5.4 MeV 6.3 MeV 7.1 MeV

3. Cell-sample wheel to study Radiobiological effects:

Run summary (June 3, 2019):

- Irradiated 45 cell samples with variable doses at 0.5Gy/shot)
- 1500 PW target shots (including plasma lens alignment and online dose monitoring)

3. cell samples

FLASH-Radiobiological studies enabled by BELLA-PW-driven proton beams

The Second Beam Line uses the same laser and will deliver a second focused laser beam for staging experiments

New ultra-high intensity laser beamline to provide 50 MeV/u ions for in vivo irradiation of small mammals and exciting opportunities in discovery plasma science

- Fundamental Physics of Relativistic Plasmas advanced ion acceleration, relativistic oscillating mirror, flying mirror
- Relativistic Laboratory Astrophysics plasma instabilities, bow waves, magnetized jets, antimatter plasma, collisionless shocks
- High Intensity Particle Physics Nonlinear QED, Multiphoton Compton and Breit-Wheeler processes, EM cascades

Features

- A. New target chamber for highest laser intensities >10²¹W/cm²
- B. Double plasma mirror for temporal contrast enhancement of laser (ns-ps) <10⁻¹⁴
- C. Expansion space for diagnostic, probe laser, ion beamlines, betatron backlighter for WDM studies