

Laser-driven Ion Acceleration and Societal Applications at the Extreme Light Infrastructure (ELI)

Daniele Margarone

ELI-Beamlines, IoP-ASCR (Prague)

daniele.margarone@eli-beams.eu

- ELI-Beamlines: F. Schillaci, L. Giuffrida, F. Grepl, A. Velyhan, M. Tryus, T. Chagovets, M. Zakova, J. Psikal, V. Scuderi, G. Korn
- INFN-LNS: G.A.P. Cirrone, G. Petringa, F. Romano, G. Cuttone

EAAC, Elba, September 16-20, 2019

ELIMAIA user beamline

- *"a laser-driven ion accelerator for multidisciplinary applications"*
- why radiobiology with laser-accelerated ion bunches?

R&D on high rep. rate targetry and detectors

- debris-free cryogenic targets
- real-time ion diagnostics

First particles (ions and electrons) accelerated at the TERESA testbed by the HAPLS (L3) laser @ 10s TW

ELI-Beamlines experimental areas

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

ELI-Beamlines: lasers

Invited talk by G. Korn (Thursday, 11:00)

Beamline	L1	L2 (development)	- L3	L4
Peak power	7 TW	100 TW	 >1 PW 	10 PW
Energy in pulse	100 mJ	1.5	≥30 J	≥1.5 kJ
Pulse duration	<15 fs	<15 fs	≤30 fs	≤150 fs
Rep rate	kHz	20 Hz	10 Hz	1 per min
Supplier	Pump lasers from industry (Trumpf)	Subsystems from STFC	LLNL	National Energetics
ELI-Beamlines	OPCPA pulse chain, pulse compressors, controls & timing systems	Pump laser subsystems, ps OPCPA, controls & timing systems	Compressor, short pulse diagnostics, controls & timing systems	Compressor design, OPCPA design, short pulse diagnostics, timing system

ELIMAIA: a <u>User</u> Beamline

EUROPEAN UNION European Structural and Investing Func Operational Programme Research, Development and Education

ELIMAIA-ELIMED mission profile

- The ELIMAIA beamline (ion accelerator + transport + user stations) ELI Multidisciplinary Applications of laser-Ion Acceleration Dual bid:
 2nd ELIMED Workshop and Panel,
 - provide an experimental platform to users who accelerators with multi-PW, high rep. rate lasers
 - provide laser driven ion beams with unique feat for applications in biomedicine, chemistry, mate

The ELIMED line (transport and dosimetry) ELI MEDical applications Dual bid:

INFŃ

 carry out transport and absolute dosimetry of laser-accelerated ion beams with ultrahigh dose rate

ELIMED

 gather a user community with future goal of clinical applications using a compact approach to cancer therapy (radiobiologists, medical doctors)

D. Margarone et al., "ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications", Quantum Beam Sci. 2 (2018) 8

ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications

n/journal/qubs

Volume 2 · Issue 2 | June 2018

eli

ELIMAIA-ELIMED @ ELI-Beamlines August 2018

ELI Multidisciplinary Applications of laser-Ion Acceleration

IROPEAN UNION ropean Structural and Investing Funds perational Programme Research, evelopment and Education

Date: 9/18/2019

10

C

* * * * **

 FZŰ

The ELIMAIA beamline User Offer

Summary of key equipment

Equipment	2019	2020+
Vacumm chambers	Target chamb., plasma mirr. chamb., user station	Dedicated chamber for 10 PW
Focusing Optics (OAP)	f/1.5 (L3)	f/3 or f/4 (L4)
Targets (0.01-10 Hz)	thin foils @1Hz (0.01-10 μm)	Cryog. Η @10Hz (5-100 μm)
Diagnostics (0.01-10 Hz)	TP ion spectr., TOF detectors, optical probes, Espec, X-ray cameras	Streak cameras
lon beam transport	PMQs, energy selector, conventional elements	lon buncher (sub- ns beams)
lon beam dosimeters	Faraday cup, ionization chamber, SEM	
Sample irradiation	In-air and in-vacuum system	

What users will get (after commissioning)

lon Beam Features	Enabling/pilot exp. (2020)	Flagship exp. (2020+)
Energy range	3-60 MeV/u	3-300 MeV/u
Ion No. / Iaser shot	>10 ⁸ in 10% BW	>10 ⁹ in 10% BW
Bunch duration	1-10 ns	0.1-10 ns
Energy spread	±5%	±2.5%
Divergence	±0.5°	± 0.2°
Ion Spot Size	0.1-10 mm	0.1-10 mm
Repetition rate	0.01- 1 Hz	0.01 -10 Hz

Multidisciplinary Applications of laser driven ion beams

- ✓ Diagnosis of intense interaction phenomena by Proton Radiography
- ✓ Isochoric heating for WDM (warm dense matter) by Proton Heating
- Nuclear Reactions initiated by Laser-Driven Ions (fast and brilliant neutron source for radiography, ICF fast ignition with protons, proton-boron fusion, ...)
- ✓ Studies of ion stopping power in plasmas
- ✓ Innovative approaches to **Radiobiology**, **Hadrontherapy**, **nuclear medicine** (PET)
- Radiation chemistry (pulsed radiolysis of water, management of nuclear wastes, medical therapy)
- ✓ Mimicking space radiation (electronics/detectors, radiobiology)
- ✓ Archeology/cultural heritage (PIXE, PAA, DPAA)

Radiobiology laser-accelerated ions

Possible effects proposed in literature:

- Spatio-temporal overlap of independent tracks causing collective effects and enhancing LET, hence RBE (tumor)
- Local depletion of oxygen causing a reduction in cell radiosensitivity (healthy tissues)

L. Manti et al., J. Inst. 12 (2017) M. Durante et al., Br. J. Radiol. 91 (2018)

Remarks:

- ✓ Laser-driven ions are emitted at the source within a time ∆T< ps resulting in dose deposition in 100s ps ns pulses at the sample
- Prompt dose rates > 10⁹ Gy/s can be achieved (compared with Gy/min used in radiotherapy)

Motivations:

- Development of a methodology and demonstration of viability at ultra-high dose rate hadron beams
- Validation of laser-driven sources in view of future therapeutic use
- Provision of an alternative, flexible source for radiobiological studies

ELIMAIA-ELIMED user beamline

- "a laser-driven ion accelerator for multidisciplinary applications"
- why radiobiology with laser-accelerated ion bunches?

R&D on high rep. rate targetry and detectors

- debris-free cryogenic targets
- real-time ion diagnostics

First particles (ions and electrons) accelerated at the TERESA testbed by HAPLS

High rep. rate targetry debris-free cryogenic targets

Garcia LPB (2014) Margarone PRX (2016)

Date:

ROPEAN UNION opean Structural and Investing Funds prational Programme Research, relopment and Education

High rep. rate detectors ion diagnostics & dosimetry

TOF (diamond)

BEAM

DIRECTION

TERESA testbed for "commissioning zero" image: beamlines

ei

First shot on target!

EUROPEAN UNION European Structural and Investing Func Operational Programme Research, Development and Education

